

Vertically Integrated Systems

100 Gbit/s VCSEL (940 nm) Contact type: GSG

Product Code: VM100-940-GSG-C1 1x1

Engineering Samples

Sample image only. Actual product may vary.

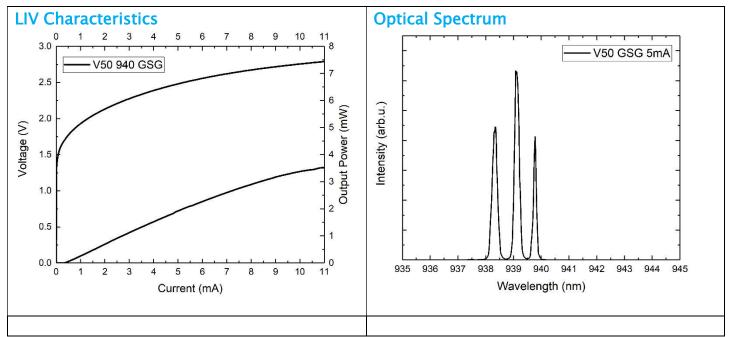
Product Description

These compact and very high modulation rate top-emitting GaAs-based vertical cavity surface emitting laser (VCSEL) chips are available as engineering samples for use in the development and evaluation of optical interconnections, optical backplanes and integrated waveguides, and next-generation optical data communications systems. The VCSELs are contacted on the top-surface individually using ground-source-ground (GSG) microprobes or wire bonds.

Optical aperture: ~5-7µm

Features	Applications
· Up to 112 Gbit/s (PAM-4 modulation)	· 200G / 400G in SWDM
· Single chip size 250 x 250 µm	· Proprietary optical interconnects
 Suitable for wire bonding 	· Active Optical Cables (AOC)

Parameter	Typical	Notes
Emission wavelength	880 nm	(range 930 – 950 nm)
Data rate	Up to 112 Gbit/s	56 GBaud/s PAM-4
Threshold current	< 0.5 mA	
Peak output power	3 mW	

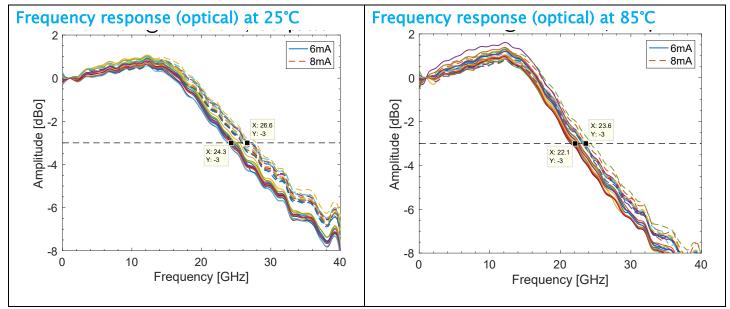


Vertically Integrated Systems

Electro-Optical Specifications (T = 0 to 85°C)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Emission wavelength	λ		930		950	nm
Data rate	BR	PAM-4		50	56	GBaud/s
Optical bandwidth	BW (f3dBo)	6 mA		23	28	GHz
Slope efficiency	η	5-10 mA		0.35		W/A
Threshold current	lth			0.5		mA
Differential resistance	Rd	5-10 mA		60		Ω
Beam divergence	Θ	86%		30		o
Peak output power	Pmax			3		mW
Spectral bandwidth (RMS)	$\Delta\lambda_{RMS}$			0.5	0.8	nm

*anti-reflection coating is optimized for <1% reflectivity within the range 840 nm - 960 nm


Transmitter: SHF BPG 12104A. Receiver: Tektronix DSA8300 w. 80C15 Optical Sampling Module. **Eye diagrams show intrinsic performance of the chip. No equalization or signal processing was applied.** If the eye-diagram is open at 50Gbaud NRZ without equalization, one can expect good 100Gbit/s PAM4

transmission quality if appropriate PAM driver or/and pre-equalized signal is applied.

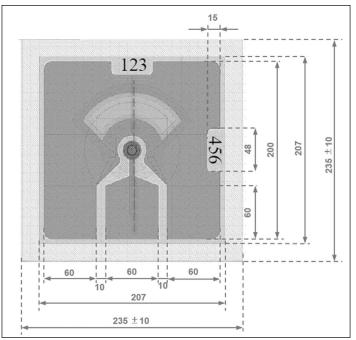
Datasheet

VM100-940-GSG-Cxx

Vertically Integrated Systems

Test Equipment: Keysight VNA

Absolute Maximum Ratings


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Peak forward current	lf				8	mA
Maximum reverse voltage	V _{rv}				5	V
Operating temperature	T _{op}				85	°C
Storage temperature	T _{st}		-40		100	°C
Soldering temperature	T _{sl}	max 260 sec			150	°C

Stress in excess of any of the individual Absolute Maximum Ratings can cause immediate irreversible damage to the component even if all other parameters are within the electro-optical specifications. Exposure to any of the Absolute Maximum Ratings for extended periods can adversely affect the reliability of these chips.

Mechanical Dimensions

Parameter	Туре	Min	Тур	Max	Unit
VCSEL pitch			250		μm
Length			210	250	μm
Height		140	150	160	μm
Width			210	250	μm

Dimensions

VS

Vertically Integrated Systems

Qualification Notification

The VM10-940-GSG-C1 has been tested to meet specifications outlined in this data sheet at room temperature. However, it has not undergone full qualification testing or characterization and therefore may not meet the performance specifications over all extremes.

VI Systems GmbH

Hardenbergstrasse 7 10623 Berlin Tel.: +49 30 3083143 30 Fax: +49 30 3083143 59 sales@v-i-systems.com www.v-i-systems.com