DR-AN-10-MO 10 GHz Analog Driver Module

Delivering Modulation Solutions

Analog Driver

Features

- Output voltage up to 9 V_{nn}
- Linear amplifier
- Flat gain up to 12 GHz
- Single voltage power supply
- Low group delay variation

Applications

- LiNbO₃ modulators
- OFDM, RF over fiber
- Linar amplification
- Clock amplifier
- Research & Development

Options

- Heat-sink
- Alternative RF connectors gender

The DR-AN-10-MO is a wideband RF amplifier module designed for analog applications at frequencies up to 12 GHz.

The DR-AN-10-MO is characterized by a low Noise Figure and a linear transfer function whose 1 dB compression point is above 21 dBm. It exhibits flat Group Delay and Gain curves with reduced ripple over the entire bandwidth.

The DR-AN-10-MO operates from a single power supply for safety and ease of use, and offers gain control over 3 dB. It comes in a compact 52 mm x 25.6 mm housing with K type RF connectors (compatible SMA) and with an optional heat sink.

This amplifier module is ideally suited to drive optical modulators for analog applications.

Performance Highlights

Parameter	Min	Тур	Max	Unit
Cut-off frequencies	100 k	11 G	-	Hz
Output voltage	0	-	9	V _{pp}
Gain	-	30	-	dB
Saturated output power	23	-	-	dBm
Output power 1dB comp	20	21	-	dB
Harmonics	-	-	-15	dBc
Noise Figure	3	-	-	dB
Measurements for $V = 12 V V$	= 12 V I	= 310 m/s		·

Measurements for V_{bias} = 12 V, V_{amp} = 1.2 V, I_{bias} = 310 mA

Analog Driver

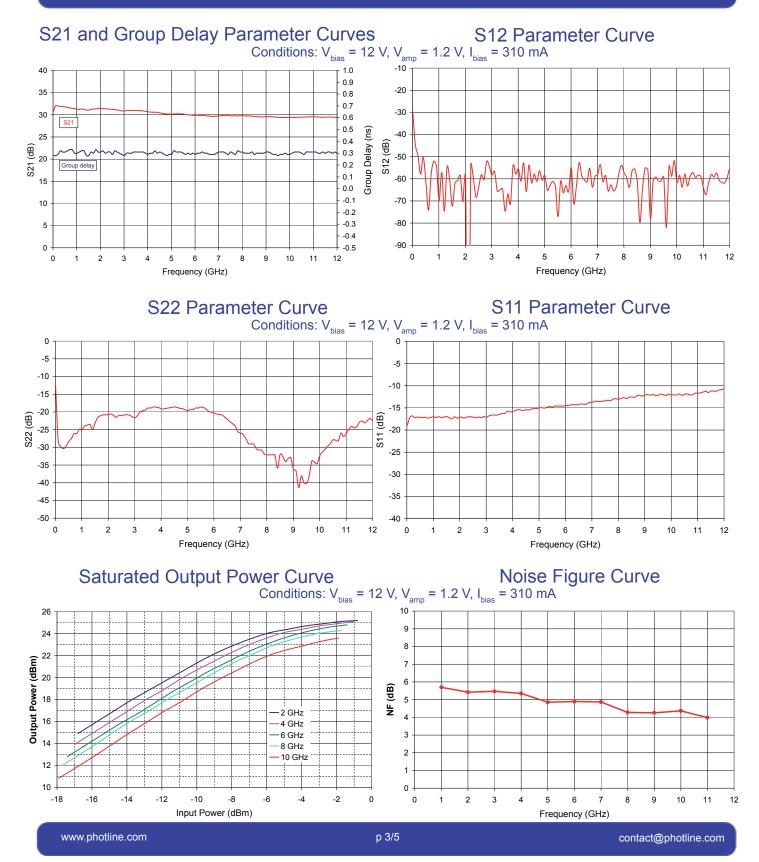
DC Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage (fixed)	V _{bias}	-	12	-	V
Current consumption	I _{bias}	-	310	-	mA
Gain control voltage	V_{amp}	-	1.2	-	V

Electrical Characteristics

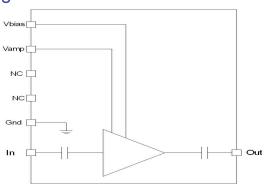
Conditions: S parameters conditions : P_{in} = -30 dBm, T_{amb} = 25 °C, 50 Ω system

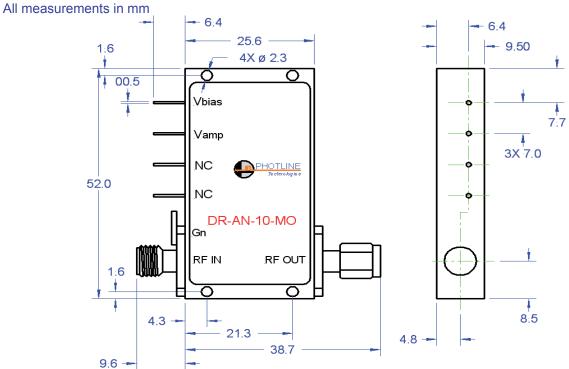
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Lower frequency	f _{3dB} , lower	-3 dB point	-	-	100	kHz
Upper frequency	f _{3dB} , upper	-3 dB point	-	11	-	GHz
Gain	S ₂₁	Small signal, f < 10 GHz	-	30	-	dB
Gain ripple	-	f < 10 GHz	-	±1.5	-	dB
Input return loss	S ₁₁	f < 10 GHz	-	-10	-	dB
Output return loss	S ₂₂	f < 10 GHz	-	-10	-	dB
Isolation	S ₁₂	f < 10 GHz	-	-60	-	dB
Output power 1dB	P _{1dB}	2 GHz < f < 10 GHz	20	21	-	dBm
Saturated output power	P _{sat}	2 GHz < f < 10 GHz	23	-	-	dBm
Output voltage V _{out}	N	Linear	0	-	5.5	N
	Maximum swing	0	-	9	V _{pp}	
Noise Figure	NF	2 GHz < f < 10 GHz	3	-	7	dB
Harmonics	Harm	@P _{1dB} , f < 5 GHz	-	-	-15	dBc
Power dissipation	Р	Small signal	-	3.7	-	W


Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
RF input voltage	V _{in}	-	1	V _{pp}
Supply voltage	V_{bias}	7	15	V
DC current	I _{bias}	0	0.4	А
Gain control voltage	V _{amp}	0	1.3	V
Power dissipation	P _{diss}	-	4.8	W
Temperature of operation	T _{op}	0	+50	W
Storage temperature	T _{st}	-20	+70	°C


Analog Driver



Analog Driver

Electrical Schematic Diagram

Mechanical Diagram and Pinout

The heatsinking of the module is necessary. It's user responsability to use an adequate heatsink. Refer to page 5 for Photline Technologies recommended heatsink.


PIN	Function	Operational Notes
IN	RF In	K-connector female
OUT	RF Out	K-connector male
V _{bias}	Power supply voltage	Set at typical operating specification
V _{amp}	Output voltage amplitude adjustment	Adjust for gain control tuning

Analog Driver

Mechanical Diagram and Pinout with HS-MO2 Heatsink

All measurements in mm

ABOUT US

Photline Technologies is a provider of Fiber Optics Modulation Solutions based on the company LiNb03 modulators and high-speed electronics modules. Photline Technologies offers high speed and high data rate modulation solutions for the telecommunication industry and the defense, aerospace, instruments and sensors markets. The products offered by the company include : comprehensive range of intensity and phase modulators (800 nm, 1060 nm, 1300 nm, 1550 nm), RF drivers and modules, transmitters and modulation units.

Photline Technologies phone : +33 (0) 381 853 180 fax : +33 (0) 381 811 557 16, rue Auguste Jouchoux F-25 000 Besançon Photline Technologies reserves the right to change, at any time and without notice, the specifications, design, function or form of its products described herein. All statements, specification, technical information related to the products herein are given in good faith and based upon information believed to be reliable and accurate at the moment of printing. However the accuracy and completeness thereof is not guaranteed. No liability is assumed for any inaccuracies and as a result of use of the products. The user must validate all parameters for each application before use and he assumes all risks in connection with the use of the products.