

DFF

Features

- Data transmission up to 30 Gbps
- 3.3 V to 8 V single voltage power supply
 Low jitter
- Low rise / fall time
- Single ended and differential output

Applications

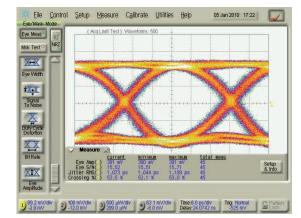
- Data retiming
- 28 Gbps DPSK
- 2×28 Gbps (D)QPSK
- Research & Development

Options

Alternative RF output connectors

The DFF-DG-30 is a D-type Flip Flop (DFF) module which is primarily intended for retiming of high data rate signals. The DFF-DG-30 supports data transmission rates up to 30 Gbps and clock frequencies as high as 30 GHz.

The DFF-DG-30 retimes and reshapes single ended input data streams into differential output data streams.


It is also useful when associated with other logical circuits for application such as : NRZ/RZ conversion, DPSK and DQPSK differential encoding, phase detection in PLL loops or memories.

Performance Highlights

Parameter	Min	Тур	Max	Unit
Data rate	2	-	30	Gbps
Data output voltage (single-ended)	-	390	-	mV
SNR	-	15	-	-
СРМ	-	200	-	Degree
Rise / Fall Times	-	13 / 13	-	ps

Measurements for V_{bias} = 5 V, I_{bias} = 136 mA

30 Gbps Output Response

DC Electrical Characteristics

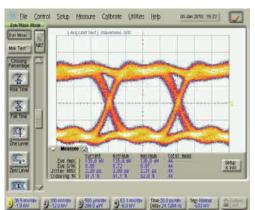
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage	V _{bias}		3.3	5	8	V
Current consumption	l _{bias}	V _{bias} = 5 V	-	0.135	-	А

Electrical Characteristics Conditions: V_{bias} = 5 V, T_{amb} = 25 °C, 50 Ω system

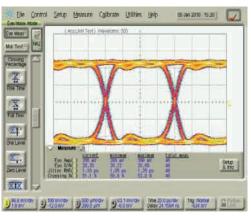
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Data rate	D _{in}	NRZ format @f _{cik}	2	-	30	Gbps
Clock frequency	f _{Clk}	-	2	-	30	GHz
Data input voltage	V _{Din}	-	100	300	800	mV _{pp}
Clock input voltage	V _{Clk}	-	100	300	800	dB
	V _{Dout}	Single-ended	370	390	420	
Data output voltage V _{Dout+} - V _{Dout-} Differential		740	780	840	mV _{pp}	
Data input return loss	S11 _{Din}	f < 10 GHz	-	-	-10	dB
Clock input return loss	S11 _{Clk}	f < 10 GHz	-	-	-10	dB
Data output return loss	S22 _{Dout}	f < 10 GHz	-	-	-10	dB
Signal noise ratio	SNR	-	-	15	-	-
Clock phase margin	СРМ	@28 Gbps	-	200	-	Degree
Rise time / Fall time	t _r / t _r	20 % - 80 %, 28 Gbps	-	13 / 13	-	ps
Power dissipation	P _{diss}	V _{bias} = 5 V	0.675	-	-	W

Absolute Maximum Ratings Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Мах	Unit
Data input voltage	D _{in}	0	800	mV _{pp}
Clock input voltage	V _{Clk}	0	800	mV _{pp}
Supply voltage	V _{bias}	0	8	V
Power dissipation	P _{diss}	-	0.7	W
Temperature of operation	T _{op}	0	+40	°C
Storage temperature	T _{st}	-20	+70	°C

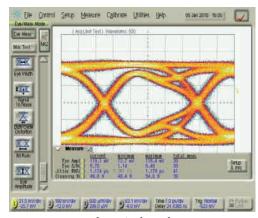


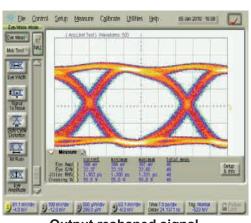
Example of Reshaped Eye Diagrams


12.5 Gbps data rate

Conditions: Ratio ¹/₂, Pattern 2³¹-1

 V_{bias} = 5 V, I_{bias} = 136 mA


Input signal Eye amplitude = 0.135 V, Rise time = 15 ps Jitter RMS = 2.2 ps, SNR = 8.85

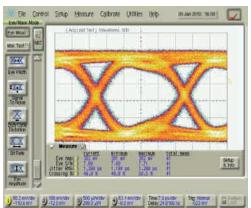

Output reshaped signal Measured using Agilent 86100B with two 50 GHz 8348A channels module, and without precision time-base module Eye amplitude = 0.395 V, Rise time = 12.9 ps Jitter RMS = 1.1 ps, SNR = 20.2

25 Gbps data rate

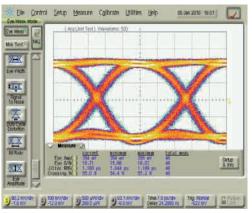
Conditions: Ratio $\frac{1}{2}$, Pattern 2³¹-1 V_{bias} = 5 V, I_{bias} = 136 mA

Input signal Eye amplitude = 0.118 V, Rise time = 13.1 ps Jitter RMS = 1.17 ps, SNR = 5.7

Output reshaped signal Measured using Agilent 86100B with two 50 GHz 8348A channels module, and without precision time-base module Eye amplitude = 0.386 V, Rise time = 12.6 ps Jitter RMS = 1.3 ps, SNR = 22.37

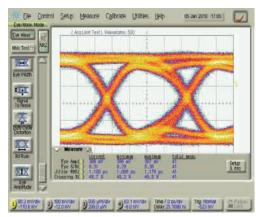


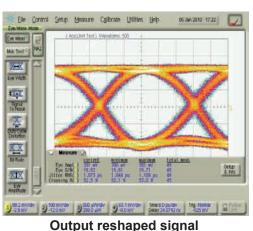
Example of Reshaped Eye Diagrams


28 Gbps data rate

Conditions: Ratio ¹/₂, Pattern 2³¹-1

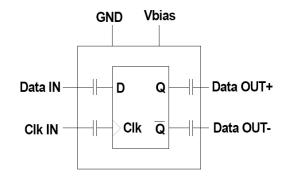
 V_{bias} = 5 V, I_{bias} = 136 mA


Input signal Eye amplitude = 0.382 V, Rise time = 11.36 ps Jitter RMS = 1.27 ps, SNR = 7.69

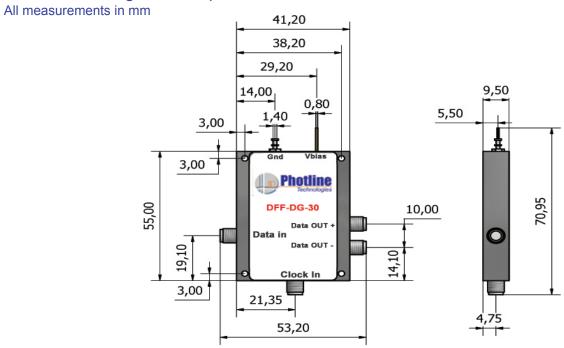

Output reshaped signal Measured using Agilent 86100B with two 50 GHz 8348A channels module, and without precision time-base module Eye amplitude = 0.394 V, Rise time = 13.07 ps Jitter RMS = 1.16 ps, SNR = 15.7

30 Gbps data rate

Conditions: Ratio $\frac{1}{2}$, Pattern 2³¹-1 V_{bias} = 5 V, I_{bias} = 136 mA


Input signal Eye amplitude = 0.386 mV, Rise time = 11.36 ps Jitter RMS = 1.1 ps, SNR = 8.31

Measured using Agilent 86100B with two 50 GHz 8348A channels module, and without precision time-base module Eye amplitude = 0.391 V, Rise time = 13.73 ps Jitter RMS = 1.073 ps, SNR = 15.52


Electrical Schematic Diagram

Clock	DATA IN	DATA OUT	DATA OUT previous
Rising edge ↑	0	0	Х
Rising edge ↑	1	1	Х
No clock or non-rising edge	х	Previous state	х

X : "don't care" condition (signal is irrelevant)

Mechanical diagram and pinout

PIN	Function	Operational Notes	
Data In	Data RF input	K-connector female	
Clock In	Clock RF input	K-connector female	
V _{bias}	Power supply voltage	Pin feed through diameter 0.8 mm	
Gnd	Ground	Pin feed through diameter 1.4 mm	
Data Out -	RF output K-connector female (male in option)		
Data Out +	RF output	K-connector female (male in option)	

DFF-DG-30 22 Gbps High Output Voltage Driver Module

DFF

DFF

MM CK

лп

PRBS

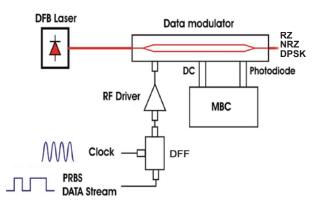
DATA Stream

DFB Laser

PRBS

DATA Stre

Clock

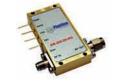

RF Driver

RF Driver

DFF

DOPSK

Related equipments


RZ / NRZ / DPSK datastream reshaping

MX-LN series modulators are intended for 10 / 28 / 40 Gbps RZ / NRZ / DPSK modulation formats.

DR-DG amplifiers series are intended to drive MX-LN series modulators for 10 / 28 / 40 Gbps RZ / NRZ / DPSK modulation formats.

MBC-DG-BT is an automatic bias controller designed to lock the operating point of the MX-LN modulators.

MXIQ-LN-40 is an ultra low loss IQ modulator for 2 x 22 Gbps DQPSK modulation.

Modulator

мвс

DQPSK datastream reshaping

DR-DG-20-HO amplifiers are intended to drive MXIQ-LN-40 modulator with 2 x V $_{\pi}$ signal for 2 x 22 Gbps DQPSK modulation.

MBC-IQ-BT is an automatic bias controller designed to individually lock the operating point of the MXIQ-LN-40 sub-MZs.

V1, PT-Q1-2010

ABOUT US

Photline Technologies is a provider of Fiber Optics Modulation Solutions based on the company LiNb03 modulators and high-speed electronics modules. Photline Technologies offers high speed and high data rate modulation solutions for the telecommunication industry and the defense, aerospace, instruments and sensors markets. The products offered by the company include : comprehensive range of intensity and phase modulators (800 nm, 1060 nm, 1300 nm, 1550 nm), RF drivers and modules, transmitters and modulation units.

Photline Technologies phone : +33 (0) 381 853 180 fax : +33 (0) 381 811 557 16, rue Auguste Jouchoux F-25 000 Besançon

Photline Technologies reserves the right to change, at any time and without notice, the specifications, design, function or form of its products described herein. All statements, specification, technical information related to the products herein are given in good faith and based upon information believed to be reliable and accurate at the moment of printing. However the accuracy and completeness thereof is not guaranteed. No liability is assumed for any inaccuracies and as a result of use of the products. The user must validate all parameters for each application before use and he assumes all risks in connection with the use of the products.