

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ASNT7120-KMA 6GS/s, 4-bit Flash Analog-to-Digital Converter

- 18*GHz* analog input bandwidth
- Selectable clocking mode: external high-speed clock or internal PLL with external reference clock
- Broadband operation in external clocking mode: DC-6GS/s
- On-chip PLL with a central frequency of 10*GHz*
- Optional external preset of the internal clock divider
- Internal demultiplexer 4-to-16 for the output data rate reduction
- Differential CML input data and clock buffers
- Proprietary low-power LVDS output interface
- Selectable output clock frequency and polarity
- Selectable on-chip digital-to-analog converter for self-testing
- Single +3.5V power supply
- Power consumption: 2.4W
- Custom 100-pin metal-ceramic package

DESCRIPTION

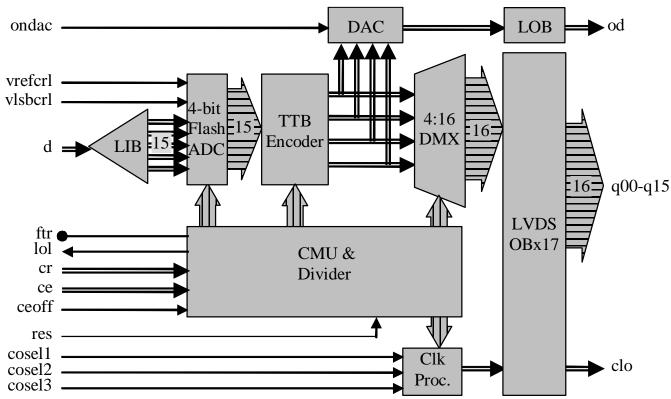
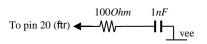


Fig. 1. Functional Block Diagram

The ASNT7120-KMA is a 4-bit flash analog to digital converter (ADC) featuring high sampling rate and wide analog front-end bandwidth. The ADC system shown in Fig. 1 includes a linear input buffer (LIB) with a tree architecture and a CML-type input interface with internal 50*Ohm* single-ended terminations to vcc. The buffer delivers 15 matching copies of the input analog data signal d to the 4-bit flash ADC. The ADC creates 15 samples of the input data in thermometer code, which are then converted into 4-bit binary words with a data rate *f*. The encoded data is demultiplexed into 16-bit wide words with a data rate *f*/4 and sent to the output through 16 low-power LVDS buffers. An optional digital-to-analog converter (DAC) can be used for the control of the ADC's operation.

All operations are synchronized by the internal clock multiplication unit (CMU) based on a PLL (phaselocked loop) with an integrated divider. The block can operate in two different modes: clock multiplication (PLL is on) and clock division (PLL is off). In both modes, the divider generates internal clock signals divided by 2, 4, 8, and 16. The generated clocks divided by 4, 8, and 16 are sent to the LVDS output **clo** through a clock processor that selects the desired speed (**cosel1**, **cosel2** control signals) and polarity (**cosel3** control signal) of the output clock. In the second operational mode of CMU, the divider can be preset by the external signal **res** to ensure the correct phase relation between the output data and clock.

The part operates from a single +3.5V power supply. All external control signals are compatible with the 2.5V CMOS interface.



Linear Input Buffer (LIB)

The system includes a linear input buffer (LIB) with a tree-type architecture that delivers 15 matching copies of the wide-band input differential analog data signal dp/dn to the 4-bit flash section. Symmetry is closely followed in both schematic and layout to ensure minimal aperture jitter.

Clock Multiplication Unit (CMU) & Divider

The PLL-based CMU with external loop filter connected to the pin ftr as shown in Fig. 2 can operate in two different modes. In the first "clock multiplication" mode (ceoff="1"), the CMU multiplies the external reference clock crp/crn with the speed of f/16 by means of a PLL with a central frequency of f and a wide tuning range of the internal VCO (voltage-controlled oscillator). The generated clock is processed by the divider in order to generate internal clock signals divided by 2, 4, 8, and 16.

Fig. 2. Recommended External Loop Filter Schematic

In the second "clock division" mode (ceoff="0"), the PLL is disabled and the internal clocks are generated from the external high-speed clock cep/cen. To ensure the correct bit order, the divider should be preset by the active-high CMOS control signal res. A special control signal cpcsel can be used to fine-tune the PLL loop gain. It is recommended to keep this pin not-connected (at default state).

HS External Clock Input Buffer

The high-speed external clock input buffer can accept high-speed clock signals at its differential CML input port **cep/cen**. It can also accept a single-ended signal with a threshold voltage applied to the unused pin. HS CIB can handle a wide range of input signal amplitudes. The buffer utilizes on-chip single-ended termination of 50*Ohm* to vcc for each input line.

LS Reference Clock Input Buffer

The low-speed reference clock input buffer is a proprietary LVDS buffer with internal 100*Ohm* differential termination between its inputs crp/crn. The buffer exceeds the requirements of standards IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995. It is designed to accept differential signals with amplitudes above 100mV peak-to-peak (p-p), a wide range of DC common mode voltages, and AC common mode noise with a frequency up to 5MHz and voltage levels ranging from 0 to 2.4V.

4-bit Flash Analog to Digital Converter (ADC) with Encoder

This block samples the incoming analog data with the clock signal provided by the CMU in order to generate a 4-bit output digital signal (Bit 0 - Bit 3) with MSB corresponding to Bit 3. The threshold voltages (V_{th}) of the ADS can be adjusted through analog signals vrefcrl and vlsbcrl as shown in Table 1.

	Control signal	Ad	ljusted value
Name	Range	Name	Range
vrefcrl	vcc-1.0V -> vcc	$V_{th\ 15}$	vcc - $0.5V$ -> vcc - $0.15V$
vlsbcrl	vcc $-0.6V \rightarrow vcc -0.2V$	$V_{th (X+1)} - V_{th X}$	$550uV \rightarrow 55mV$

As can be seen, vrefcrl shifts the DC levels of all the threshold voltages simultaneously by the same amount while vlsbcrl alters the voltage range of the least significant bit (LSB).

If no external voltages are applied to vrefcrl and vlsbcrl, it is recommended that both pins are AC-terminated by 50*Ohm* to vee through a DC block!

Demultiplexer (4:16 DMX)

This block deserializes the 4-bit words from the ADC into 16-bit output words as shown in Table 2.

Table 2. Demultiplexer Bit Order

Serialized input words		Fi	rst			Sec	ond			Th	ird			Foi	ırth	
ADC bits (3 is MSB)	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3
DMX output bits	00	04	08	12	01	05	09	13	02	06	10	14	03	07	11	15

Clock Processor (Clk Proc)

To increase the adaptability of the designed ADC, a clock processor that provides a low-speed output clock signal with the options specified in Table 3, is included.

Externa	al control	Output clock signal		
cosel1	cosel2	cosel3	Speed	Inversion
1	1	1	c4	Yes
1	1	0	c4	No
0	1	1	c8	Yes
0	1	0	c8	No
Х	0	1	c16	Yes
Х	0	0	c16	No

Table 3.	Output	Clock	Options
1 000 00 01	o mp m	010011	opnono

Digital to Analog Converter (DAC)

A DAC block is included to perform a quick test of the ADC's functionality. When activated by the external control signal (ondac="1"), it converts the digital data into a step-wise copy of the input signal that is sent to the output odp/odn through a linear differential output buffer. The circuit is not consuming any power when disabled (ondac="0").

LVDS Output Buffers

The 16-bit differential digital data words q00p/q00n to q15p/q15n are delivered to the output through an array of proprietary low power LVDS buffers. The low speed differential clock clop/clon also utilizes a similar LVDS output buffer. The buffers satisfy all the requirements of the IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995.

Ultra High-Speed Mixed Signal ASICs

 \mathcal{F}

Ę

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

TERMINAL FUNCTIONS

Pin #	Pin name	Pin type	Pin #	Pin name	Pin type	Pin #	Pin name	Pin type
1	vee	GND	35	vcc	3.5V	69	q12p	LVDS
2	vee	GND	36	vee	GND	70	q12n	outputs
3	q02p	LVDS	37	vee	GND	71	vcc	3.5V
4	q02n	outputs	38	vcc	3.5V	72	q11p	LVDS
5	vcc	3.5V	39	dn	HS CML	73	q11n	outputs
6	q01p	LVDS	40	dp	inputs	74	vee	GND
7	q01n	outputs	41	vcc	3.5V	75	vee	GND
8	vcc	3.5V	42	vee	GND	76	vcc	3.5V
9	q00p	LVDS	43	vee	GND	77	q10p	LVDS
10	q00n	outputs	44	vcc	3.5V	78	q10n	outputs
11	vcc	3.5V	45	n/c		79	vcc	3.5V
12	clop	LVDS	46	res	CMOS input	80	q09p	LVDS
13	clon	outputs	47	ondac	CMOS input	81	q09n	outputs
14	n/c		48	vlsbcrl	Control	82	vcc	3.5V
15	vee	GND	49	vrefcrl	voltages	83	q08p	LVDS
16	cosel1	CMOS input	50	vee	GND	84	q08n	outputs
17	cosel2	CMOS input	51	vee	GND	85	vcc	3.5V
18	cosel3	CMOS input	52	n/c		86	q07p	LVDS
19	lol	Control output	53	n/c		87	q07n	outputs
20	ftr	Filter	54	n/c		88	vcc	3.5V
21	vee	GND	55	vcc	3.5V	89	q06p	LVDS
22	ceoff	CMOS input	56	odp	LS CML	90	q06n	outputs
23	vee	GND	57	odn	outputs	91	vcc	3.5V
24	cpcsel	CMOS input	58	vee	GND	92	q05p	LVDS
25	vcc	3.5V	59	n/c		93	q05n	outputs
26	vcc	3.5V	60	q15p	LVDS	94	vcc	3.5V
27	crn	LVDS	61	q15n	outputs	95	q04p	LVDS
28	crp	inputs	62	vcc	3.5V	96	q04n	outputs
29	vcc	3.5V	63	q14p	LVDS	97	vcc	3.5V
30	vee	GND	64	q14n	outputs	98	q03p	LVDS
31	vee	GND	65	vcc	3.5V	99	q03n	outputs
32	vcc	3.5V	66	q13p	LVDS	100	vcc	3.5V
33	cen	HS CML	67	q13n	outputs			
34	cep	inputs	68	VCC	3.5V			

Ultra High-Speed Mixed Signal ASICs

 \mathcal{F}

Ę

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ELECTRICAL CHARACTERISTICS

General ParametersVCC 3.4 3.5 3.6 V $\pm 3\%$ Vee 0.0 V External ground $lvcc$ 680 mA Power consumption 2.4 W Junction temperature -25 50 125 C C Bandwidth 0.0 18 GHz $CM Level$ $vcc 0.8$ vcc V Must match for both inputsLinearity range ± 110 mV $Around CM level$ Non-linearity ± 3 $\%$ of the linearity rangeHS Input Clock (Cep/cen)FrequencyDC6 GHz Swing 0.2 0.8 V Duty Cycle4050 60 $\%$ TS Reference Input Clock (cep/cm)Frequency 560 688 MHz $MLevel$ 0.2 vcc V Must match for both inputsDuty Cycle 40 50 60 $\%$ $Mist match for both inputsDuty Cycle405060\%Mist match for both inputsDuty Cycle1.5GbpsCM Level0.2vccVNominal for LVDS interfaceAmplitude range250350mVRise/Fall TimesTBDpsMither ange250350mVRise/Fall TimesTBDpsMither ange250350WMither$	PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS				
vee 0.0 V External ground Vcc 680 mA Power consumption 2.4 W Power consumption 2.4 W Junction temperature -25 50 125 $°C$ Analog Input Data (dp/dn)Bandwidth 0.0 18 GH_z CM Levelvcc- 0.8 vcc V Must match for both inputsLinearity range ± 110 mV Around CM levelNon-linearity ± 3 $\%$ of the linearity rangeHS Input Clock (cep/cen)FrequencyDC 6 GH_z Swing 0.2 0.8 V Differential or SE, p-pCM Voltage Levelvcc- 0.8 vccVyMust match for both inputsDuty Cycle40 50 60 $\%$ $\%$ Notage Swing 100 800 mV Duty Cycle 40 50 60 $\%$ M Output Data (q00p/q00n to q15p/q15n)Data RateDC 1.5 Gbps $CMLevel$ 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 MV M GM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 mV M <	General Parameters									
Nec680 mA Power consumption2.4WJunction temperature-2550125 $^{\circ}C$ Analog Input Data (dp/dn)Bandwidth0.018 GHz CM Levelvcc-0.8vccVMust match for both inputsLinearity range ± 110 mV Around CM levelNon-linearity ± 3 $\%$ of the linearity rangeHS Input Clock (cep/cen)FrequencyDC6GHzSwing0.20.8VDuty Cycle405060Voltage Levelvcc-0.8vccV Voltage Swing0.2vccVoltage Swing100800mWDifferentialDuty Cycle405060 $\%$ Utevel0.2vccVoltage Swing100Bata RateDC1.5GHpsGhpsCM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV Rise/Fall TimesTBDps20%-80%CM Level1.2Voltage Swing250350 mV Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2 <td>VCC</td> <td>3.4</td> <td>3.5</td> <td>3.6</td> <td>V</td> <td>±3%</td>	VCC	3.4	3.5	3.6	V	±3%				
Power consumption2.4WJunction temperature-2550125 $^{\circ}C$ Analog Input Data (dp/dn)Bandwidth0.018 GHz CM Levelvcc-0.8vccVMust match for both inputsLinearity range ± 110 mV Around CM levelNon-linearity ± 3 $\%$ Of the linearity rangeHS Input Clock (cep/cen)FrequencyDC6GHzSwing0.20.8VDifferential or SE, p-pCM Voltage Levelvcc-0.8vccVC Voltage Levelvcc-0.8vccVulce405060 $\%$ 9%DetroS660688MHz1/16 of VCO frequencyCM Level0.2vccVoltage Swing100800mVDifferentialDuty Cycle4050MateDC1.5GbpsCutput Data (q00p/q00r to q15p/q15n)Data RateDC1.5CM Level1.2VNominal for LVDS interfaceAmplitude range250250350mVRise/Fall TimesTBDps20%-80%LS Output Clock (clop/clon)Frequencyf/4f/4f/8f/16GHzSelectable. Here f is the PLL or HS input clock frequencyCM Level1.2Voltage Swing250350mV <td>vee</td> <td></td> <td>0.0</td> <td></td> <td>V</td> <td>External ground</td>	vee		0.0		V	External ground				
Junction temperature -25 50 125 $^{\circ}C$ Analog Input Data (dp/dn)Bandwidth 0.0 18 GHz CM Level $vcc-0.8$ vcc V Must match for both inputsLinearity range ± 110 mV Around CM levelNon-linearity ± 3 $\%$ of the linearity rangeHS Input Clock (cep/cen)FrequencyDC 6 GHz Swing 0.2 0.8 V Differential or SE, p-pCM Voltage Levelvcc- 0.8 vcc V Must match for both inputsDuty Cycle40 50 60 $\%$ LS Reference Input Clock (crp/crn)Frequency 560 688 MHz $1/16$ of VCO frequencyCM Level 0.2 vcc V Voltage Swing 100 800 mV DifferentialDuty Cycle 40 50 60 $\%$ Output Data (q00/q00r to q15p/q15n)Data RateDC 1.5 $Gbps$ CM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 mV Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 mV Duty CycleJitterTBD ps Duty Cycle 50 <	Ivcc		680		mА					
Analog Input Data (dp/dn)Bandwidth0.018 GHz CM LevelVCC-0.8VCCVMust match for both inputsLinearity range ± 110 mV Mon-linearity ± 3 %of the linearity rangeHS Input Clock (Cep/cen)FrequencyDC6GH Voltage LevelVCC-0.8VCVMust match for both inputsDuty Cycle405060US Reference Input Clock (cep/cen)Frequency560688MHz1/16 of VCO frequencyCM Voltage Swing100800mVDifferentialOutput Data (q00p/q00n to q15p/q15n)Data RateDC1.5GbpsCM Level1.2VNominal for LVDS interfaceAmplitude range250350WNominal for LVDS interfaceAmplitude range250350VNominal for LVDS interfaceAmplitude range250350VNote: Colspon <td col<="" td=""><td>Power consumption</td><td></td><td>2.4</td><td></td><td></td><td></td></td>	<td>Power consumption</td> <td></td> <td>2.4</td> <td></td> <td></td> <td></td>	Power consumption		2.4						
Bandwidth 0.0 18 GHz CM Levelvcc-0.8vcc V Must match for both inputsLinearity range ± 110 mV Around CM levelNon-linearity ± 3 $\%$ of the linearity rangeHS Input Clock (cep/cen)FrequencyDC 6 GHz Swing 0.2 0.8 V Differential or SE, p-pCM Voltage Levelvcc-0.8vcc V Must match for both inputsDuty Cycle 40 50 60 $\%$ LS Reference Input Clock (crp/crn)Frequency 560 688 MHz $1/16$ of VCO frequencyOutput Data (q00p/q000 to q15p/q15n)Data RateDC 1.5 $Gbps$ CM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 mV Requency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLLOutput Clock (clop/clon)TBD ps $20\%-80\%$ Duty Cycle 50 $\%$ Duty Cycle 50 $\%$ DAC Output (cdp/cdn)VNominal for LVDS interfaceAmplitude range 250 350 W Duty Cycle 50 $\%$ DAC Ou	Junction temperature	-25	50	125	$^{\circ}C$					
CM Levelvcc 0.8 vccVMust match for both inputsLinearity range ± 110 mV Around CM levelNon-linearity ± 3 %of the linearity rangeHS Input Clock (cep/cen)FrequencyDC6 GHz Swing 0.2 0.8 VDifferential or SE, p-pCM Voltage Levelvcc 0.8 vccVMust match for both inputsDuty Cycle4050 60 %LS Reference Input Clock (crp/crn)Frequency560 688 MHz $1/16$ of VCO frequencyCM Level 0.2 vccVVVoltage Swing100 800 mV DifferentialDuty Cycle4050 60 $\%$ $\%$ Output Data (q00p/q00n to q15p/q15n)Data RateDC 1.5 $Gbps$ CM Level 1.2 VNominal for LVDS interfaceAmplitude range250 350 mV Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level 1.2 VNominal for LVDS interface 350 W Nominal for LVDS interfaceAmplitude range250 350 W Nominal for LVDS interfaceMust Part Clock (clop/clon) V Nominal for LVDS interfaceVoltage Swing250 350 W Nominal for LVDS interfaceDuty Cycle50 $\%$ V <td></td> <td colspan="9"></td>										
Linearity range ± 110 mV Around CM levelNon-linearity ± 3 %of the linearity rangeHS Input Clock (cep/cen)FrequencyDC6 GHz Swing0.20.8VDifferential or SE, p-pCM Voltage Levelvcc-0.8vccVMust match for both inputsDuty Cycle405060%LS Reference Input Clock (crp/crn)Frequency560688 MHz 1/16 of VCO frequencyCM Level0.2vccVVoltage Swing100800 mV DifferentialDuty Cycle405060%Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5 $Gbps$ CM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 V JitterTBD ps Duty Cycle50%Duty Cycle50%CM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 V JitterTBD ps Duty Cycle50%Data Gontrol Signals (vrfcrl, vlsbcrl)Voltage range <tr< td=""><td>Bandwidth</td><td>0.0</td><td></td><td>18</td><td>GHz</td><td></td></tr<>	Bandwidth	0.0		18	GHz					
Non-linearity ± 3 %of the linearity rangeHS Input Clock (cep/cen)FrequencyDC6 GHz Swing0.20.8VDifferential or SE, p-pCM Voltage Levelvcc-0.8vccVMust match for both inputsDuty Cycle405060%LS Reference Input Clock (crp/crn)Frequency560688 MHz 1/16 of VCO frequencyCM Level0.2vccVVoltage Swing100800 mV DifferentialDuty Cycle405060%Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5 $Gbps$ CM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350 W Single-ended. p-pOutput Odd250350 mV Single-ended. p-pOutput Gode swing)/2VSingle-ended. p-pVoltage Swing <t< td=""><td>CM Level</td><td>vcc-0.8</td><td>3</td><td>VCC</td><td>V</td><td>Must match for both inputs</td></t<>	CM Level	vcc-0.8	3	VCC	V	Must match for both inputs				
HS Input Clock (cep/cen)FrequencyDC6 GHz Swing0.20.8VDifferential or SE, p-pCM Voltage Levelvcc-0.8vccVMust match for both inputsDuty Cycle405060%LS Reference Input Clock (crp/crn)Frequency560688 MHz 1/16 of VCO frequencyCM Level0.2vccVVoltage Swing100800 mV DifferentialDuty Cycle405060%Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5GbpsCM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV ISOutput Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHzSelectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350Utevel1.2VNominal for LVDS interfaceAmplitude range250350Utevel1.2VNominal for LVDS interfaceAmplitude range250350VJitterTBDDuty Cycle50So%Duty Cycle50Moting Control Signals (vrfcrl, vlsbcrl)Voltage Swing250250350WSingle-ended. p-	Linearity range		±110		mV	Around CM level				
FrequencyDC6 GHz Swing0.20.8VDifferential or SE, p-pCM Voltage Levelvcc-0.8vccVMust match for both inputsDuty Cycle405060%LS Reference Input Clock (crp/crn)Frequency560688 MHz 1/16 of VCO frequencyCM Level0.2vccVVVoltage Swing100800 mV DifferentialDuty Cycle405060%Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5GbpsCM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV Eselectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV Duty Clock (clop/clon)Frequencyf/4f/8f/16GHzSelectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350JitterTBD ps Duty Cycle50%Duty Cycle50%Duty Cycle50%Duty Cycle50%DAC Output (odc/pdn)Voltage Swing250350 mV Si	Non-linearity		±3		%	of the linearity range				
Swing 0.2 0.8 V Differential or SE, p-pCM Voltage LevelVCC- 0.8 VCC V Must match for both inputsDuty Cycle 40 50 60 $\%$ LS Reference Input Clock (crp/crn)Frequency 560 688 MHz $1/16$ of VCO frequencyCM Level 0.2 vcc V Voltage Swing 100 800 mV DifferentialDuty Cycle 40 50 60 $\%$ Output Data (q00p/q00n to q15p/q15n)Data RateDC 1.5 $Gbps$ CM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 mV Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 VJitterTBDps ps Duty Cycle 50 $\%$ Uty Cycle 50 $\%$ Duty Cycle 50 $\%$ Duty Cycle 50 $\%$ Uty Cycle 50 $\%$ Uty Cycle 50 $\%$ Uty Cycle 50 $\%$ Duty Cycle<			HS Inp	ut Clock (C	cep/cen)					
CM Voltage LevelVCC-0.8VCC V Must match for both inputsDuty Cycle405060%LS Reference Input Clock (crp/crn)Frequency560688 MHz 1/16 of VCO frequencyCM Level0.2vcc V Voltage Swing100800 mV DifferentialDuty Cycle405060%Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5GbpsCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Rise/Fall TimesTBD ps 20%-80%CM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyMuture range250350 V JitterDAC Output (odp/odn)Voltage Swing250350 mV Single-ended. p-p M Single-ended. p-pCM Level250350 mV Single control Signals (vrfcrl, vlsbcrl)Voltage Range250350 mV Single-ended. p-pCM Level V see Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Frequency	DC		6	GHz					
Duty Cycle405060 $\%$ LS Reference Input Clock (crp/crn)Frequency560688 MHz 1/16 of VCO frequencyCM Level0.2vcc V Voltage Swing100800 mV DifferentialDuty Cycle405060 $\%$ Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5GbpsCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Rise/Fall TimesTBD ps 20%-80%CM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Cottput Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 V InterfaceJitterTBD ps Duty Cycle50Duty Cycle50 $\%$ InterfaceDuty Cycle50 $\%$ Single-ended. p-pCM Level250350 mV Single-ended. p-pCM LevelVcc-(voltage swing)/2 V VVoltage Swing250QSO350 mV Single-ended. p-pCM LevelVcc-(voltage swing)/2 V see Table 1Voltage range	Swing	0.2		0.8	V	Differential or SE, p-p				
LS Reference Input Clock (crp/crn)Frequency 560 688 MHz $1/16$ of VCO frequencyCM Level 0.2 vcc V Voltage Swing 100 800 mV DifferentialDuty Cycle 40 50 60 $\%$ Output Data (q00p/q00n to q15p/q15n)Data RateDC 1.5 $Gbps$ CM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 mV Rise/Fall TimesTBD ps $20\%-80\%$ LS Output Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 V JitterTBD ps Duty Cycle 50 $\%$ DAC Output (odp/odn) V Voltage Swing 250 350 mV Single-ended. p-p CM Level $vcc-(voltage swing)/2$ V Voltage range V see Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	CM Voltage Level	vcc-0.8		VCC	V	Must match for both inputs				
Frequency560688 MHz 1/16 of VCO frequencyCM Level0.2vcc V Voltage Swing100800 mV DifferentialDuty Cycle405060%Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5GbpsCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Rise/Fall TimesTBD ps 20%-80%CM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Comput Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 V JutterTBD ps Duty Cycle50 $\%$ DAC Output (odp/odn)Voltage Swing250350 mV Single-ended. p-pCM Levelvcc-(voltage swing)/2 V Voltage rangeVsee Table 1Voltage rangeVsee Table 1	Duty Cycle	40	50	60	%					
Frequency560688 MHz 1/16 of VCO frequencyCM Level0.2vcc V Voltage Swing100800 mV DifferentialDuty Cycle405060%Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5GbpsCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Rise/Fall TimesTBD ps 20%-80%CM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Concert Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 V DAC Output (odc/odn)Voltage Swing250350 mV Single-ended. p-pCM LevelVcc-(voltage swing)/2 V Voltage rangeVsee Table 1Voltage rangeVSee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ordac)		LS F	Referenc	e Input Cl	ock (crp/o	crn)				
Voltage Swing100800 mV DifferentialDuty Cycle405060%Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5 $Gbps$ CM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 mV Rise/Fall TimesTBD ps 20%-80%LS Output Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 V IterTBD ps Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2 V Nominal for LVDS interfaceAmplitude range250350 V JitterTBD ps ps Duty Cycle50% MV Voltage Swing250350 mV Single-ended. p-p CM Level $vcc-(voltage swing)/2$ V Analog Control Signals (vrfcrl, vlsbcrl)Voltage range V see Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Frequency									
Duty Cycle405060 $\%$ Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5GbpsCM Level1.2VNominal for LVDS interfaceAmplitude range250350mVRise/Fall TimesTBD ps 20%-80%LS Output Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350VJitterTBD ps Duty Cycle50 $\%$ Duty Cycle50 $\%$ DAC Output (odp/odn)Voltage Swing250 350 mV Single-ended. p-pCM Level 250 350 mV Single range V see Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	CM Level	0.2		VCC	V					
Output Data (q00p/q00n to q15p/q15n)Data RateDC1.5GbpsCM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV Rise/Fall TimesTBD ps 20%-80%LS Output Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350VJitterTBD ps Duty Cycle50 $\%$ DAC Output (odp/odn)Voltage Swing250350 mV Single-ended. p-p MV Single-ended. p-pCM LevelVcc-(voltage swing)/2VSingle-ended. p-pVoltage rangeVSee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Voltage Swing	100		800	mV	Differential				
Data RateDC1.5GbpsCM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV Rise/Fall TimesTBD ps 20%-80%LS Output Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350VJitterTBD ps InterfaceDuty Cycle50 $\%$ Voltage Swing250350 mV Single-ended. p-pVoltage Swing250350 mV Single-ended. p-pVoltage rangeVcc-(voltage swing)/2VVoltage rangeVSee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Duty Cycle	40	50	60	%					
Data RateDC1.5GbpsCM Level1.2VNominal for LVDS interfaceAmplitude range250350 mV Rise/Fall TimesTBD ps 20%-80%LS Output Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level1.2VNominal for LVDS interfaceAmplitude range250350VJitterTBD ps InterfaceDuty Cycle50 $\%$ Voltage Swing250350 mV Single-ended. p-pVoltage Swing250350 mV Single-ended. p-pVoltage rangeVcc-(voltage swing)/2VVoltage rangeVSee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)		Outpu	t Data (q00p/q00n	to q15p/	q15n)				
CM Level 1.2 VNominal for LVDS interfaceAmplitude range 250 350 mV Rise/Fall TimesTBD ps $20\%-80\%$ LS Output Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level 1.2 VNominal for LVDS interfaceAmplitude range 250 350 VJitterTBD ps InterfaceDuty Cycle 50 $\%$ InterfaceVoltage Swing 250 350 mV Single-ended. p-pCM Level $\sqrt{cc-(voltage swing)/2}$ V InterfaceVoltage range V See Table 1 V CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Data Rate									
Rise/Fall TimesTBD ps 20%-80%LS Output Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 V JitterTBD ps Duty Cycle 50 $\%$ DAC Output (odp/odn)Voltage Swing 250 350 mV Single-ended. p-p CM Level $vcc-(voltage swing)/2$ V Voltage rangeVoltage range V see Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	CM Level		1.2			Nominal for LVDS interface				
LS Output Clock (clop/clon)Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level 1.2 VNominal for LVDS interfaceAmplitude range 250 350 VJitterTBD ps Duty Cycle 50 $\%$ DAC Output (odp/odn)Voltage Swing 250 350 mV Single-ended. p-p CM LevelVcc-(voltage swing)/2 V Voltage rangeVoltage range V see Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Amplitude range	250		350	mV					
Frequency $f/4$ $f/8$ $f/16$ GHz Selectable. Here f is the PLL or HS input clock frequencyCM Level 1.2 V Nominal for LVDS interfaceAmplitude range 250 350 V JitterTBD ps Duty Cycle 50 $\%$ DAC Output (odp/odn)Voltage Swing 250 350 mV Single-ended. p-p CM Level $vcc-(voltage swing)/2$ V Voltage rangeVoltage range V see Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Rise/Fall Times		TBD		ps	20%-80%				
CM Level1.2VNominal for LVDS interfaceAmplitude range250350VJitterTBDpsDuty Cycle50%DAC Output (odp/odn)Voltage Swing250350mVSingle-ended. p-pVcc-(voltage swing)/2VAnalog Control Signals (vrfcrl, vlsbcrl)Voltage rangeVsee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)		Ι	LS Outp	ut Clock (O	clop/clon)					
CM Level1.2VNominal for LVDS interfaceAmplitude range250350VJitterTBDpsDuty Cycle50%DAC Output (odp/odn)Voltage Swing250350mVSingle-ended. p-pVcc-(voltage swing)/2VAnalog Control Signals (vrfcrl, vlsbcrl)Voltage rangeVsee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Frequency									
Amplitude range250350VJitterTBDpsDuty Cycle50%DAC Output (odp/odn)Voltage Swing250350mVSingle-ended. p-pVCC-(voltage swing)/2VCM LevelVCC-(voltage swing)/2VAnalog Control Signals (vrfcrl, vlsbcrl)Voltage rangeVsee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)		-	-	-						
JitterTBDpsDuty Cycle50%DAC Output (odp/odn)Voltage Swing250350mVSingle-ended. p-pCM Levelvcc-(voltage swing)/2VAnalog Control Signals (vrfcrl, vlsbcrl)Voltage rangeVsee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	CM Level		1.2		V	Nominal for LVDS interface				
Duty Cycle50%DAC Output (odp/odn)Voltage Swing250350mVSingle-ended. p-pCM Levelvcc-(voltage swing)/2VVAnalog Control Signals (vrfcrl, vlsbcrl)Voltage rangeVsee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Amplitude range	250		350	V					
DAC Output (odp/odn)Voltage Swing250350mVSingle-ended. p-pCM Levelvcc-(voltage swing)/2VVAnalog Control Signals (vrfcrl, vlsbcrl)Voltage rangeVsee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)			TBD		ps					
Voltage Swing250350mVSingle-ended. p-pCM Levelvcc-(voltage swing)/2VAnalog Control Signals (vrfcrl, vlsbcrl)Voltage rangeVsee Table 1CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Duty Cycle		50		%					
CM Level vcc-(voltage swing)/2 V Analog Control Signals (vrfcrl, vlsbcrl) Voltage range V see Table 1 CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	DAC Output (odp/odn)									
Analog Control Signals (vrfcrl, vlsbcrl) Voltage range V see Table 1 CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	Voltage Swing	250		-		Single-ended. p-p				
Voltage range V see Table 1 CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)	CM Level	VCC-(v	oltage sv	wing)/2	V					
Voltage range V see Table 1 CMOS Control Signals (cosel1, cosel2, cosel3, ceoff, cpcsel, res, ondac)		Analo	g Contr	ol Signals	(vrfcrl, vls	sbcrl)				
	Voltage range		~	U						
	CMOS Contro	ol Signals ((cosel1.	cosel2. co	osel3, ce	off, cpcsel, res, ondac)				
Logic "0" level vee+0.2 V					V					

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings presented in Table 4 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (vee).

Parameter	Min	Max	Units
Supply Voltage (VCC)		4.0	V
Power Consumption		2.75	W
RF Input Voltage Swing (SE)		1.4	V
Case Temperature		+100	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

Table 4. Absolute Maximum Ratings

PACKAGE INFORMATION

The chip die is housed in a custom 100-pin CQFP package shown in Fig. 3. The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the **vcc** plain, which is power for a positive supply.

The part's identification label is ASNT7120-KMA. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

ADSANTEG Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

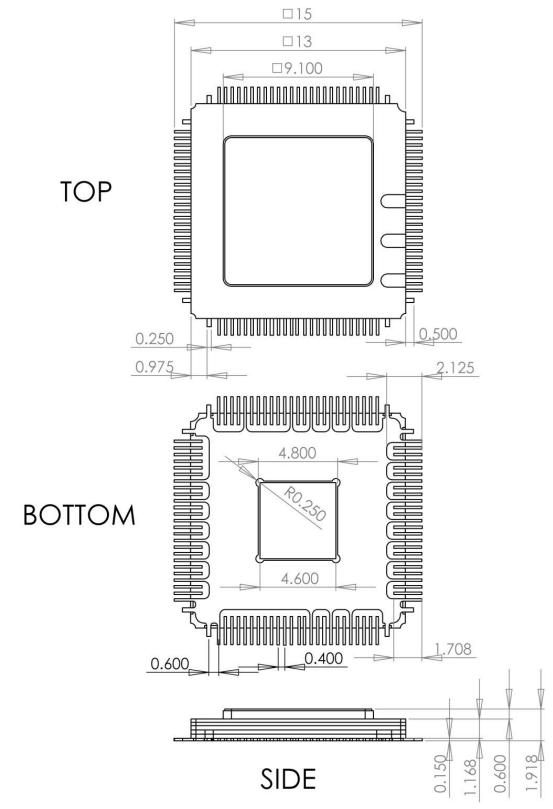


Fig. 3. Package Drawing

REVISION HISTORY

Revision	Date	Changes
2.7.2	02-2020	Updated Package Information
2.6.2	07-2019	Updated Letterhead
2.6.1	07-2015	Updated title
		Revised Electrical Characteristics table
		Revised Absolute Maximum Ratings section
		Revised Package Information section
2.5.1	09-2013	Corrected Table 3
2.4.1	09-2013	Corrected Table 2
2.3.1	03-2013	Corrected description
		Revised package information
2.2.1	03-2013	Corrected description
		Added Bit Order table
		Corrected absolute maximum ratings
		Corrected electrical characteristics
		Revised package information
		Corrected format
2.1	03-2012	Corrected range of control voltages
2.0	03-2012	Added pin out drawing
		Added external loop filter schematic
1.1	06-2011	Added Absolute Maximums Rating table
		Added packaging information
		Added RoHS compliancy
		Added revision history table
1.0	01-2011	First release