
www.adsantec.com

ASNT5071-PQC DC-17*Gbps/*10*GHz* Phase Shifter

- Broadband (DC-17*Gbps*/DC-10*GHz*) tunable data/clock phase shifter
- Delay adjustment range of 320ps
- Exhibits low jitter and limited temperature variation over industrial temperature range
- 100MHz of bandwidth for the phase adjustment tuning ports
- Fully differential CML input interfaces
- Fully differential CML output interface with 600mV single-ended swing
- Single +3.3V or -3.3V power supply
- Power consumption: 1.44*W*
- Fabricated in SiGe for high performance, yield, and reliability
- Standard MLF/QFN 24-pin package

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

DESCRIPTION

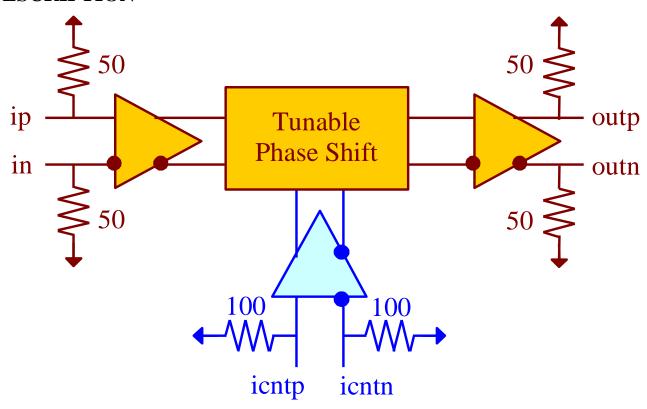


Fig. 1. Functional Block Diagram

ASNT5071-PQC is a data / clock variable delay line fabricated in SiGe technology. The IC shown in Fig. 1 provides an adjustable delay of its differential output signal outp/outn in relation to its broadband input signal ip/in. The delay adjustment range is temperature-stabilized. The delay is controlled through a wide-band differential tuning port icntp/icntn.

The part's I/O's support the CML logic interface with on chip 50*Ohm* termination to vcc and may be used differentially, AC/DC coupled, single-ended, or in any combination (see also POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically. The differential DC signaling mode is recommended for optimal performance.

Due to an extremely low jitter, the part is suitable for use in high-speed measurement / test equipment.

Delay Control Port

The delay is controlled through a wide-band differential tuning port icntp/icntn. The simulated delay control diagram is shown in Fig. 2.

www.adsantec.com



Fig. 2. Delay Control Diagram

www.adsantec.com

POWER SUPPLY CONFIGURATION

The part can operate with either a negative supply (vcc = 0.0V = ground and vee = -3.3V), or a positive supply (vcc = +3.3V and vee = 0.0V = ground). In case of a positive supply, all I/Os need AC termination when connected to any devices with 50Ohm termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume vcc = 0.0V and vee = -3.3V.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground.

Parameter Min Max **Units** Supply Voltage (vee) -3.6 VPower Consumption \overline{W} 1.58 RF Input Voltage Swing (SE) \overline{V} 1.0 Case Temperature ${}^{o}C$ +90 Storage Temperature ${}^{o}C$ -40 +100Operational Humidity 10 98 % Storage Humidity 10 98 %

Table 1. Absolute Maximum Ratings

TERMINAL FUNCTIONS

TERMINAL			DESCRIPTION					
Name	No.	Type						
High-Speed I/Os								
ip	20	CML	Differential high-speed data/clock inputs with internal SE 50 <i>Ohm</i>					
in	22	input	termination to VCC					
icntp	2	CML	Differential low-speed control inputs with internal SE 100 <i>Ohm</i>					
icntn	4	input	termination to VCC					
outp	10	CML	Differential high-speed data/clock outputs with internal SE 50 <i>Ohm</i>					
outn	8	output	termination to vcc. Require external SE 50 <i>Ohm</i> termination to vcc					
Supply and Termination Voltages								
Name		De	scription	Pin Number				
vcc	Positive power supply (+3.3 <i>V</i> or 0)			1, 3, 5, 7, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23				
vee	Negative power supply $(0V \text{ or } -3.3V)$			6, 12, 18, 24				

www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS				
General Parameters									
vee	-3.1	-3.3	-3.5	V	±6%				
vcc		0.0		V	External ground				
<i>I</i> vee		435		mА					
Power consumption		1435		mW					
Junction temperature	-40	25	125	°C					
		HS In	put Data	/Clock (ip	o/in)				
Data Rate	DC		17	Gbps					
Frequency	DC		10	GHz	For clock signals				
Swing	0.05		1.0	V	Differential or SE, p-p				
CM Voltage Level	vcc-0.8		VCC	V	Must match for both inputs				
	I	IS Outpu	ıt Data/C	Clock (out	p/outn)				
Data Rate	DC		17	Gbps					
Frequency	DC		10	GHz	For clock signals				
Logic "1" level		VCC		V	-				
Logic "0" level		vcc-0.6		V	With external 50 <i>Ohm</i> DC termination				
Rise/Fall times	15	17	19	ps	20%-80%				
Output Jitter			3	ps	Peak-to-peak				
Duty cycle	45	50	55	%	For clock signal				
		Out	put-to-I	nput Dela	y				
Adjustment range		320		ps	For the full range of icntp/icntn control signals				
Absolute delay stability	-4		4	ps	0-125°C				
710501die delay stability	•	oso Shift	•	l port (icn					
Bandwidth	DC	iase Siiii	100	MHz					
SE voltage level	vcc-6	00	VCC	mV	Half control range when the opposite				
SE voluge level	100 0	00	700	116 4	pin is at VCC				
SE voltage level	vcc-12	200	VCC	mV	Full control range when the opposite				
					pin is at vcc-0.6V				
Differential swing	0		1200	mV	Peak-peak, full control range				
CM Level	VCC-(Diff. swi	ng)/4	V	In differential mode				

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

PACKAGE INFORMATION

The chip die is housed in a standard 24-pin QFN package shown in Fig. 3. It is recommended that the center heat slug located on the back side of the package is soldered to the **vee** plain, which is ground for the positive supply or power for the negative supply. It will help dissipate heat generated by the chip during operation.

The part's identification label is ASNT5071-PQC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

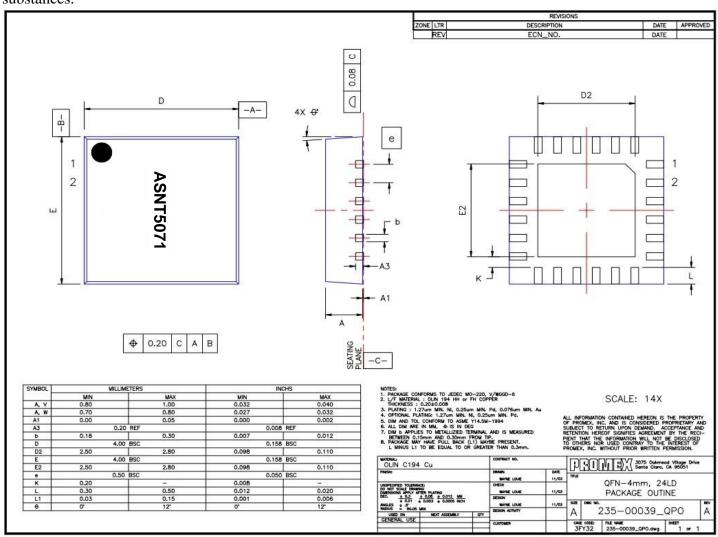


Fig. 3. QFN 24-Pin Package Drawing (All Dimensions in mm)

www.adsantec.com

REVISION HISTORY

Revision	Date	Changes		
5.2.2	01-2020	Updated Package Information		
5.1.2	07-2019	Updated Letterhead		
5.1.1	06-2013	Revised description		
		Corrected adjustment range		
		Corrected delay control diagram		
		Corrected electrical characteristics table		
5.0.1	03-2013	Corrected title		
		Revised package pin out drawing		
		Revised functional block diagram		
		Revised description		
		Added delay graph		
		Added power supply configuration		
		Added absolute maximum ratings		
		Revised terminal functions		
		Revised electrical characteristics		
		Revised package information		
		Added mechanical drawing		
		Format correction		
4.0	10-2008	Revised electrical characteristics section		
		Added packaging information section		
3.0	06-2007	Revised electrical characteristics section		
2.0	04-2007	Revised terminal functions section		
1.0	01-2007	First release		