

ASNT5170-PQC DC-17*Gbps*/14*GHz* Signal Phase Shifter

- Broadband (DC-17*Gbps*/DC-14*GHz*) tunable data/clock phase shifter
- Delay adjustment range of 260ps
- Exhibits low jitter and limited temperature variation over industrial temperature range
- 100*MHz* of bandwidth for the phase adjustment tuning port
- Ideal for high speed proof-of-concept prototyping
- Fully differential CML input interfaces
- Fully differential CML output interface with 400mV single-ended swing
- Single +3.3V or -3.3V power supply
- Power consumption: 610*mW*
- Fabricated in SiGe for high performance, yield, and reliability
- Standard MLF/QFN 24-pin package

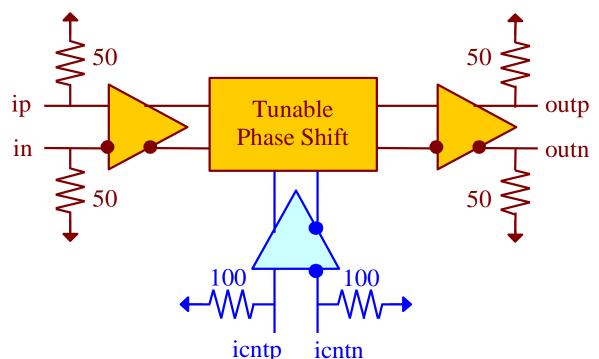


Fig. 1. Functional Block Diagram

ASNT5170-PQC is a data / clock variable delay line fabricated in SiGe technology. The IC shown in Fig. 1 provides an adjustable delay of its differential output signal **outp/outn** in relation to its broadband input signal **ip/in**. The delay is controlled through a wide-band differential tuning port **icntp/icntn**.

The part's I/O's support the CML logic interface with on chip 50*Ohm* termination to **vcc** and may be used differentially, AC/DC coupled, single-ended, or in any combination (see also POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically. The differential DC signaling mode is recommended for optimal performance.

Due to an extremely low jitter, the part is suitable for use in high-speed measurement / test equipment.

Delay Control Port

The delay is controlled through a wide-band differential tuning port icntp/icntn. The delay control diagram is shown in Fig. 2.

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

						400						
						180						
						160						
						140						
						120						
						100						
						80						
Relative Delay, ps						60						
elay						40						
Ve D						<mark></mark> 20-						
elati						- o						
_ر ۳	.6 -0	.5 -0	.4 -C	.3 -0	.2 -(.1 <u>-20</u>	<u> </u>	1 0	2 0	.3 0	4 0	<u>5 0</u> 6
						-40						
						-60						
						-80-						
						-100						
						- <u>120</u> -						
	Vcntp-Vcntn											

Fig. 2. Delay Control Diagram

POWER SUPPLY CONFIGURATION

The part can operate with either a negative supply (vcc = 0.0V = ground and vee = -3.3V), or a positive supply (vcc = +3.3V and vee = 0.0V = ground). In case of a positive supply, all I/Os need AC termination when connected to any devices with 50*Ohm* termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume vcc = 0.0V and vee = -3.3V.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 1 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground.

Parameter	Min	Max	Units
Supply Voltage (vee)		-3.6	V
Power Consumption		0.67	W
RF Input Voltage Swing (SE)		1.0	V
Case Temperature		+90	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

Table 1. Absolute Maximum Ratings

TERMINAL FUNCTIONS

TE	ERMINA	AL	DESCRIPTION						
Name	No.	Туре							
	High-Speed I/Os								
ip	20	CML Differential high-speed signal inputs with internal SE 500hm							
in	22	input	nput termination to VCC						
icntp	2	Input Differential high-speed control inputs with internal SE 1000hm							
icntn	4		termination to VCC						
outp	10	CML	Differential high-speed	l signal outputs with internal SE 500hm					
outn	8	output	termination to vcc. Rec	uire external SE 500hm termination to VCC					
	Supply and Termination Voltages								
Name		De	scription	Pin Number					
vcc	Posit	ive powe	r supply $(+3.3V \text{ or } 0)$	1, 3, 5, 7, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23					
vee	Negat	ive powe	r supply (0 <i>V</i> or -3.3 <i>V</i>)	6, 12, 18, 24					

Ultra High-Speed Mixed Signal ASICs

 \mathbb{F}

Ę

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS		
General Parameters							
vee	-3.1	-3.3	-3.5	V	±6%		
VCC		0.0		V	External ground		
Ivee		185		mА			
Power consumption		610		mW			
Junction temperature	-40	25	125	$^{\circ}C$			
		HS In	put Data	/Clock (ip	o/in)		
Data Rate	DC		17	Gbps			
Frequency	DC		14	GHz	For clock signals		
Swing	0.05		1.0	V	Differential or SE, p-p		
CM Voltage Level	vcc-0.8		VCC	V	Must match for both inputs		
	Η	S Outpi	ut Data/C	Clock (Out	p/outn)		
Data Rate	DC	-	17	Gbps			
Frequency	DC		14	GHz	For clock signals		
Logic "1" level		VCC		V			
Logic "0" level	,	vcc-0.4		V	With external 500hm DC termination		
Rise/Fall times	15		19	ps	20%-80%		
Output Jitter			1	ps	Peak-to-peak		
Duty cycle	45	50	55	%	For clock signal		
		Ou	tput-to-I	nput Dela	y		
A division and you as	260			ps	For the full range of icntp/icntn		
Adjustment range					control signals		
Absolute delay stability	-30		30	ps	0-125°C		
Phase Shift Control port (icntp/icntn)							
Bandwidth	DC		100	MHz			
SE voltage level	vcc-60	0	VCC	mV	Half control range when the opposite		
_					pin is at VCC		
SE voltage level	vcc-120	00	VCC	mV	Full control range when the opposite		
-					pin is at vcc- $0.6V$		
Differential swing	0		1200	mV	Peak-peak, full control range		
CM Level	vcc-(Diff. swing)/4			V	In differential mode		

PACKAGE INFORMATION

The chip die is housed in a standard 24-pin QFN package shown in Fig. 3. It is recommended that the center heat slug located on the back side of the package is soldered to the **vee** plain, which is ground for the positive supply or power for the negative supply. It will help dissipate heat generated by the chip during operation.

The part's identification label is ASNT5170-PQC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

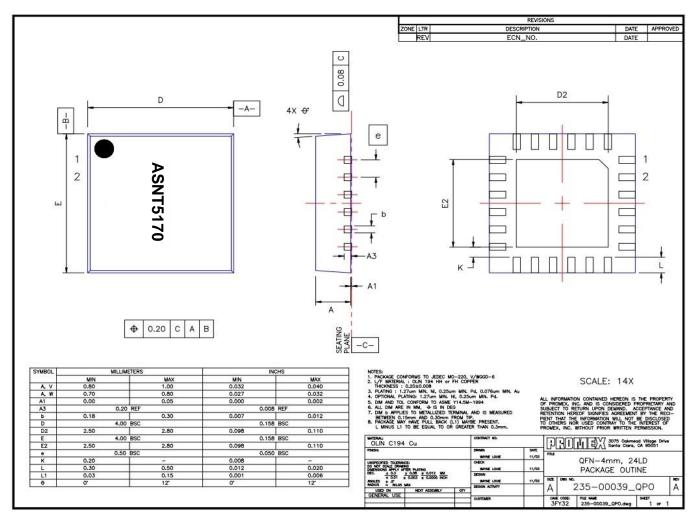


Fig. 3. QFN 24-Pin Package Drawing (all dimensions in mm)

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

REVISION HISTORY

Revision	Date	Changes			
5.3.2	01-2020	Updated Package Information			
5.2.2	07-2019	Updated Letterhead			
5.2.1	06-2013	Corrected title			
		Corrected control diagram			
		Corrected electrical characteristics table			
5.1.1	03-2013	Corrected title			
		Revised terminal functions			
		Revised electrical characteristics			
5.0.1	Revised package pin out drawing				
		Revised functional block diagram			
		Added power supply configuration			
		Added absolute maximum ratings			
		Revised terminal functions			
		Revised electrical characteristics			
		Added package information and mechanical drawing			
		Format correction			
4.0	02-2008	Revised electrical characteristics section			
		Revised packaging information section			
3.0	06-2007	Revised electrical characteristics section			
2.0	04-2007	Revised terminal functions section			
1.0	01-2007	First release			