
www.adsantec.com

ASNT5121-KMC DC-50Gbps/32GHz Signal Distributor 1-to-3

- High-speed broadband Data/Clock Amplifier and Distributor
- Exhibits low jitter and limited temperature variation over industrial temperature range
- One input differential signal port and three differential amplified output signal ports
- Matched phase delays for all outputs
- Fully differential CML input interfaces
- Fully differential CML output interface with 400mV single-ended swing
- Single +3.3V or -3.3V power supply
- Power consumption: 580mW
- Fabricated in SiGe for high performance, yield, and reliability
- Custom CQFP 24-pin package

www.adsantec.com

DESCRIPTION

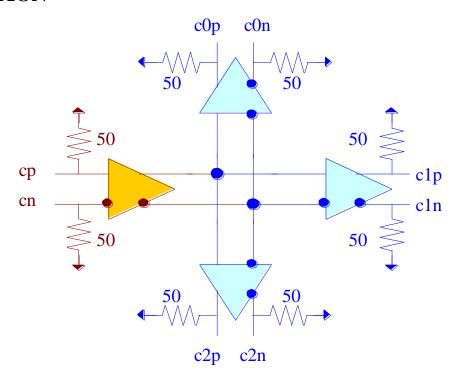


Fig. 1. Functional Block Diagram

The temperature stable ASNT5121-KMC SiGe IC provides active broadband data/clock signal splitting, and is intended for use in high-speed measurement / test equipment. The IC shown in Fig. 1 can process a broadband high-speed data/clock input signal cp/cn and deliver three broadband high-speed data/clock phase matched output signals c0p/c0n, c1p/c1n, c2p/c2n.

The part's I/O's support the CML logic interface with on chip 50*Ohm* termination to vcc and may be used differentially, AC/DC coupled, single-ended, or in any combination (see also POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically. The differential DC signaling mode is recommended for optimal performance.

POWER SUPPLY CONFIGURATION

The part can operate with either negative supply (vcc = 0.0V = ground and vee = -3.3V), or positive supply (vcc = +3.3V and vee = 0.0V = ground). In case of the positive supply, all I/Os need AC termination when connected to any devices with 50Ohm termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume VCC = 0.0V and VCC = -3.3V.

www.adsantec.com

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground.

Table 1. Absolute Maximum Ratings

Parameter	Min	Max	Units
Supply Voltage (vee)		-3.6	V
Power Consumption		0.64	W
RF Input Voltage Swing (SE)		1.0	V
Case Temperature		+90	°C
Storage Temperature	-40	+100	°C
Operational Humidity	10	98	%
Storage Humidity	10	98	%

TERMINAL FUNCTIONS

TERMINAL		DESCRIPTION				
No.	Type					
High-Speed I/Os						
21	CML	Differential high speed data/clock inputs with internal SE 500hm				
23	input	termination to VCC.				
17	CML	Differential high speed data/clock outputs with internal SE 50 <i>Ohm</i>				
15	output	termination to vcc. Require external SE 50 <i>Ohm</i> termination to vcc.				
11	CML	Differential high speed data/clock outputs with internal SE 50 <i>Ohm</i>				
9	output	termination to vcc. Require external SE 50 <i>Ohm</i> termination to vcc.				
3	CML	Differential high speed data/clock outputs with internal SE 50 <i>Ohm</i>				
5	output	termination to vcc. Require external SE 50 <i>Ohm</i> termination to vcc.				
Supply and Termination Voltages						
Name Description			Pin Number			
vcc Positive power supply. (+3.3 <i>V</i> or 0)		er supply. (+3.3 <i>V</i> or 0)	2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24			
ee Negative power supply. $(0V \text{ or } -3.3V)$		er supply. (0 <i>V</i> or -3.3 <i>V</i>)	1, 7, 13, 19			
	21 23 17 15 11 9 3 5	21 CML 23 input 17 CML 15 output 11 CML 9 output 3 CML 5 output	High-Speed 21 CML Differential high speed of termination to VCC. 17 CML Differential high speed of termination to VCC. 15 output termination to VCC. Required termination to VCC. Required termination to VCC. Required Supply and Termination Supply and Termination Supply and Termination Supply Su			

www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS		
General Parameters							
vee	-3.1 -3.3 -3.5		V	±6%			
VCC		0.0		V	External ground		
<i>I</i> vee		175		mA			
Power consumption		580		mW			
Junction temperature	-40	25	125	$^{\circ}C$			
		HS Ir	put Data	a/Clock (c	cp/cn)		
Data Rate	DC		50	Gbps			
Frequency	DC		32	GHz			
Swing	0.05		1.0	V	Differential or SE, p-p		
CM Voltage Level	vcc-0.8		VCC	V	Must match for both inputs		
	HS Outp	out Data/	Clock (c	0p/c0n, c	1p/c1n, c2p/c2n)		
Data Rate	DC		50	Gbps			
Frequency	DC		32	GHz			
Logic "1" level		VCC		V			
Logic "0" level		vcc-0.4		V	With external 50 <i>Ohm</i> DC termination		
Rise/Fall times	6	8	10	ps	20%-80%		
Output Jitter			1	ps	Peak-to-peak		
Duty cycle	45	50	55	%	For clock signal		

PACKAGE INFORMATION

The chip die is housed in a custom 24-pin CQFP package shown in Fig. 2. The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the vcc plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT5121-KMC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

www.adsantec.com

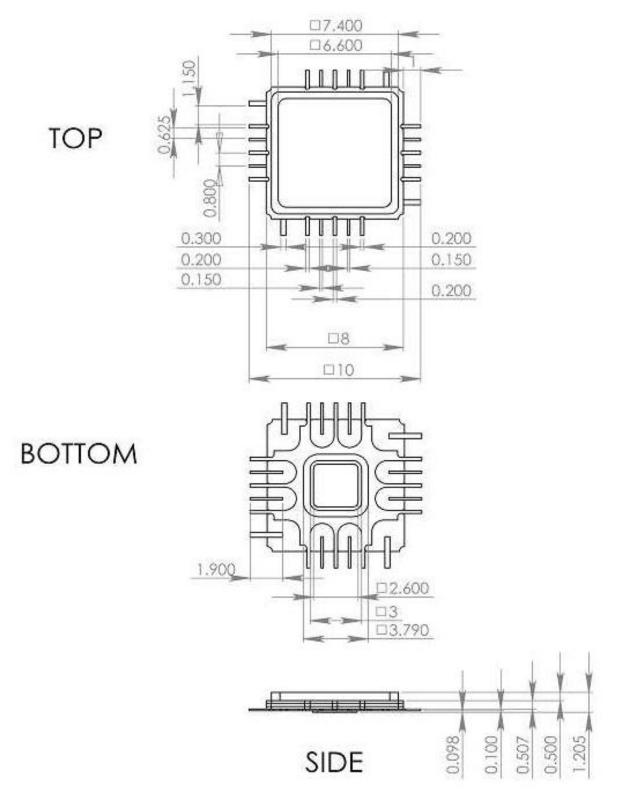


Fig. 2. CQFP 24-Pin Package Drawing (All Dimensions in mm)

www.adsantec.com

REVISION HISTORY

Revision	Date	Changes		
2.1.2	05-2020	Updated Package Information		
2.0.2	07-2019	Updated Letterhead		
2.0.1	02-2013	Added package pin out drawing		
		Revised functional block diagram		
		Revised description		
		Added power supply configuration		
		Added absolute maximum ratings		
		Revised terminal functions		
		Revised electrical characteristics		
		Added package information and mechanical drawing		
		Format correction		
1.0	10-2008	First release		