

 27 Via Porto Grande, Rancho Palos Verdes, CA, 90275.
 Ph. # 1-310-377-6029.
 Fax # 1-310-377-9940.

ASNT3010_QQB 2Gbps LVDS/CMOS/LVDS Converter and Signal Splitter

- 2-channel LVDS-to-CMOS converter (Receiver).
- 2-channel CMOS-to-LVDS converter (Transmitter).
- Triple-action programmable LVDS/CML/ECL inputs.
- Optional DS (Data/Strobe) encoding/decoding for compatibility with Space Wire Standard.
- Optional signal splitter function with selectable inversion.
- Flexible selection of channels enabling and operational modes.
- High-impedance states of disabled CMOS outputs.
- Single +3.3*V* power supply.
- Industrial temperature range.
- Power consumption: 115*mW* with all 4 channels enabled.
- Package: 40-pin MLF with $6 \times 6 mm^2$ body size and 0.5 mm lead pitch.

ASNT3010 BONDING DIAGRAM

ASNT3010 is a bi-directional 4-channel digital interface converter. It includes two independent "Receiver" channels with programmable LVDS/CML/ECL differential inputs ("d1p/n", "d2p/n") and CMOS outputs ("qm1', "qm2"), as well as two reverse "Transmitter" channels with CMOS inputs ("dm1", "dm2") and LVDS differential outputs ("q1p/n", "q2p/n").

All channels can be independently enabled or disabled by control signals ("crlr1", "crlr2", "crlt1", "crlt2"). When disabled, the CMOS output drivers are set to a high impedance (high-Z) state. Both receiver and transmitter channel pairs can be combined into a Space Wire receiver/transmitter with optional data/strobe (DS) encoding or decoding. The assignment of data and strobe or data and clock signals to the individual channels is user-selectable.

Dual transmitter and/or receiver channels can be used for splitting one of the input signals into two exact copies at two corresponding outputs. The signal at the second output can be inverted using the second input as a selector (a differential DC signal must be applied). Detailed instructions for using this operational mode are available on request.

The converter operates at data rates up to 2Gbps with a nominal power consumption of 115mW from a single +3.3V power supply in a fully activated mode. The device is characterized for operation from -25° C to 125° C of junction temperature.

The converter has an improved TID tolerance due to the HBT-based implementation.

A D S A N T E C	A d	vanced	Sci	ence
	a n d	Novel	Tech	n o logy
27 Via Porto Grande Rancho	Palos Verdes CA	A 90275 Ph # 1-	310-377-6029	Fax # 1-310-377-9940

<u>Universal IB</u>

The proprietary Universal Input Buffer (UIB) is designed to accept differential signals with amplitudes higher than 60mV, DC common mode voltage variation between the negative and positive supply voltages, and AC common mode noise with a frequency up to 5MHz and voltage levels ranging from 0 to 2.4V. It can also receive single-ended signals with amplitudes of more than 60mV and threshold voltages between the negative and positive supply rails. The buffer outputs standard internal CML signals with amplitude of 220mV.

The buffer features a reconfigurable input block with internal LVDS, CML, or ECL termination that is controlled by two external CMOS signals "oncml" and "onecl" in accordance with the following table.

"oncml"	"onecl"	Termination			
value	value	Туре	Resistance	Voltage	
V _{CC}	V _{EE} (default)	Single-ended (SE)	50 <i>0hm</i>	V _{CC}	
V _{EE} (default)	V _{CC}	Single-ended (SE)	50 <i>0hm</i>	V _{ECL}	
V _{EE} (default)	V _{EE} (default)	Differential	100 <i>Ohm</i>	-	

The ECL termination mode requires an external termination voltage of $V_{ECL}=V_{CC}-2V$ applied to the pins labeled "vecl". The buffer is set to work with incoming LVDS data by default.

CML-to-CMOS Converter

The CML-to-CMOS converter represents the output buffer of the Receiver. It includes a signal converter based on the current mirror architecture and an output CMOS driver. The block designed in a BiCMOS configuration operates at a data rate up to 2Gbps.

CMOS-to-CML Converter

The input CMOS-to-CML converter represents the input buffer of the Transmitter. It is designed as a standard CML buffer with additional resistive dividers required for the handling of rail-to-rail CMOS signals.

LVDS Output Buffer

The proprietary LVDS output buffer utilizes NPN HBTs that are available in standard BiCMOS technologies. It accepts the internal CML signals and converts them into output LVDS signals. The buffert utilizes a special architecture that ensures operation at data rates up to 2Gbps with a low power consumption level of 19mW. The buffer satisfies all the requirements of the IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995.

Internal Data Processing Circuitry

The internal parts of all 4 channels include an XOR and multiplexer 2:1 CML cells. When activated, the XOR performs the DS encoding or decoding required by the Space Wire protocol, while the multiplexer operates as a selector between the channel's input signal or XOR-processed signals. The corresponding control signals are generated by the receiver or transmitter control blocks (RCB or TCB) from 3-state external activation control signals.

Each channel can function as an independent converter, as well as a data/strobe or clock/strobe Space Wire encoder/decoder in accordance with the following table. In the second mode, the device can also perform the 1-to-2 data splitting operation (described in Application notes).

Advanced Science and Novel Technology A D S A N T E C

 27 Via Porto Grande, Rancho Palos Verdes, CA, 90275.
 Ph. # 1-310-377-6029.
 Fax # 1-310-377-9940.

"crlt1"/"crlr1"	"crlt2"/"crlr2"	Channel 1 (T or R)	Channel 2 (T or R)
\mathbf{V}_{EE}	\mathbf{V}_{EE}	off	off
V_{EE}	N/C (Default)	off	on
\mathbf{V}_{EE}	V _{CC}	off	on
N/C (Default)	\mathbf{V}_{EE}	on	off
N/C (Default)	N/C (Default)	on	on
N/C (Default)	V _{CC}	Data	Strobe/Clock
V _{CC}	V_{EE}	on	off
V _{CC}	N/C (Default)	Strobe/Clock	Data
V _{CC}	V _{CC}	on	on

TERMINAL FUNCTIONS

Name	Number	Туре	DESCRIPTION	
VCC	3,8,16,22	PS	Positive power supply	
vee	2,6,10,17,25,29	PS	Negative power supply (analog ground)	
veed	21	PS	Digital ground	
vecl	28	PS	ECL input termination voltage	
n/c	1,11,30,40	-	Floating package pin	
rfbL	4	Control	Internal reference voltages. Used only in test	
rfb2_2	5	Control	operational modes. For normal operation must be	
rfb2_1	23	Control	left flot conflected.	
rfb1_1	24	Control		
rfp	7	Control		
crlt2	12	Control	Transmitter channel 2 activation control signal	
crlt1	15	Control	Transmitter channel 1 activation control signal	
crlr1	20	Control	Receiver channel 1 activation control signal	
oncml	26	Control	Activation of the input CML termination mode	
onecl	27	Control	Activation of the input ECL termination mode	
crlr2	35	Control	Receiver channel 2 activation control signal	
vcm	9	DC voltage	CMOS input threshold voltage, default: $(V_{CC}+V_{EE})/2$	
dm2	13	Input	Transmitter channel 2 SE CMOS input	
dm1	14	Input	Transmitter channel 1 SE CMOS input	
qm2	18	Output	Receiver channel 2 SE CMOS output	
qm1	19	Output	Receiver channel 1 SE CMOS output	
d1p	31	Input	Receiver channel 1 LVDS direct input	
d1n	32	Input	Receiver channel 1 LVDS inverted input	
d2p	33	Input	Receiver channel 2 LVDS direct input	
d2n	34	Input	Receiver channel 2 LVDS inverted input	
q1p	36	Output	Transmitter channel 1 LVDS direct output	
q1n	37	Output	Transmitter channel 1 LVDS inverted output	
q2p	38	Output	Transmitter channel 2 LVDS direct output	
q2n	39	Output	Transmitter channel 2 LVDS inverted output	
Rev.: 05,	September 2009	•	ASNT3010_QQI	

a n	d l	ν νου	e l	T e	chnology
ia Porto Grande, Rancho Palos Ve	erdes, CA, 9	0275.	Ph. # 1-	-310-377-6	5029. Fax # 1-310-377-9
ECTRICAL CHARA	CTER	ISTIC	S		
DADAMETED			MAY	LINIT	COMMENTS
FARAMETER	Con	11r	MAA	UNII	COMINIENTS
Vac	3 1/	<u>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </u>	3 17	<u>s</u> V	+50/2
V	5.14	0.0	5.47	V V	LVDS grownd
VEE VEED		0.0		V	CMOS ground
		$\frac{0.0}{V_{CC}-2.0}$, V	entos ground
Power consumption		7.0		mW	1 Receiver channel. DC
· · · · · · · · · · · · · · · · · ·		20.0		mW	1 Transmitter channel
		115.0		mW	Total
Junction temperature	-25	50	125	°C	
	L	VDS I	nputs		
Data Rate	0.0		2.0	Gbps	
DC common mode voltage	V _{EE}		V _{CC}	V	DC voltage
AC common mode voltage	V _{EE}		2.4	V	AC signal <5 <i>MHz</i>
Sensitivity		60		mV	
	C	MOS I	nputs		
Frequency	0.0		1.0	Gbps	
Logic "1" level	V _{CC} -0.4			V	
Logic "0" level			0.4	V	
	L	VDS O	utputs		
Voltage Swing		320		mV	Each SE output
CM voltage	1.2		1.25	V	
Impedance	77		122	Ohm	DC test
	45		115	Ohm	AC test (0-2Gbps)
Total current	5.2		5.7	mA	From "vcc"
Output current	17		27	mA	Shorted to VEE
	4.5		7.0	mA	Shorted together
Rise/Fall Times		TBD		pS	20%-80%
	<u><i>C</i></u> <i>N</i>	MOS O	utputs		
Logic "1" level	V _{CC} -0.2			V	
Logic "0" level			0.2	V	
Rise/Fall Times		TBD			20%-to-80%
Duty Cycle	45%	50%	55%		
	СМО	S Cont	rol Inpi	<u>its</u>	
Logic "1" level	V _{CC} -0.4			V	
Logic "0" level			0.4	V	

PACKAGE INFORMATION

The chip is packaged into the standard 40-pin QFN package. The package mechanical information is available on the company's <u>website</u>.