ASNT5150-KMC
 DC-50Gbps Broadband Digital 2:1 Multiplexer/Selector

- High speed broadband 2:1 Multiplexer/Selector (MUX)
- Exhibits low jitter and limited temperature variation over industrial temperature range
- Ideal for use as a high isolation selector switch or as a high speed 2-to-1 serializer
- Ideal for high speed proof-of-concept prototyping
- Fully differential CML input interface
- Fully differential CML output interface with 400 mV single-ended swing
- Single $+3.3 V$ or $-3.3 V$ power supply
- Power consumption: 315 mW
- Fabricated in SiGe for high performance, yield, and reliability
- Custom CQFP 24-pin package

DESCRIPTION

Fig. 1. Functional Block Diagram
The temperature stable and broadband ASNT5150-KMC SiGe IC can be utilized as either a high isolation selector switch or a high speed $2: 1$ serializer and is intended for use in high-speed measurement / test equipment. When employed as a selector switch, the IC shown in Fig. 1 can route one of its differential data input signals d0p/d0n or d1p/d1n to its differential output qp/qn while effectively blocking the other data input. Selection of a specific data input is achieved through appropriate external DC biasing of the selector signal inputs $\mathrm{cp} / \mathrm{cn}$. The logic is shown in Table 1.

Table 1. Truth Table

c	d 0	d 1	out
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

As a $2: 1$ serializer, the IC can receive high speed input data signals into $d 0 p / d 0 n$ and $d 1 p / d 1 n$ and effectively multiplex them into a double frequency rate NRZ output data signal to its differential output $\mathrm{qp} / \mathrm{qn}$ by using a high speed input clock signal on its selector signal inputs $\mathrm{cp} / \mathrm{cn}$.

The part's I/O's support the CML logic interface with on chip 50Ohm termination to VCC and may be used differentially, AC/DC coupled, single-ended, or in any combination (see also POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically. The differential DC signaling mode is recommended for optimal performance.

POWER SUPPLY CONFIGURATION

The part can operate with either a negative supply ($\mathrm{vcc}=0.0 \mathrm{~V}=$ ground and vee $=-3.3 \mathrm{~V}$), or a positive supply ($\mathrm{VCc}=+3.3 \mathrm{~V}$ and vee $=0.0 \mathrm{~V}=$ ground). In case of the positive supply, all I/Os need AC termination when connected to any devices with 50 Ohm termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume vcc $=0.0 \mathrm{~V}$ and vee $=-3.3 \mathrm{~V}$.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 2 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed vcc).

Table 2. Absolute Maximum Ratings

Parameter	Min	Max	Units
Supply Voltage (vee)		-3.6	V
Power Consumption		0.34	W
RF Input Voltage Swing (SE)		1.0	V
Case Temperature		+90	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40	+125	${ }^{\circ} \mathrm{C}$
Operational Humidity	10	98	$\%$
Storage Humidity	10	98	$\%$

TERMINAL FUNCTIONS

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
General Parameters					
vee	-3.1	-3.3	-3.5	V	$\pm 6 \%$
VCC		0.0		V	External ground
Ivee		95		$m A$	
Power consumption		315		$m W$	
Junction temperature	-25	50	125	${ }^{\circ} \mathrm{C}$	
HS Input Data (d0p/d0n, d1p/d1n)					
Data rate / Frequency	DC		50/25	Gbps/GHz	When used as a selector
Data rate	DC		25	Gbps	When used as a multiplexer
Swing	50		800	$m V$	Differential or SE, p-p
CM Voltage Level	vcc-0.8		vcc	V	Must match for both inputs
HS Input Clock (cp/cn)					
Frequency	DC		25	GHz	
Swing	50		800	$m V$	Differential or SE, p-p
CM Voltage Level	vcc-0.8		vcc	V	Must match for both inputs
Duty cycle	45	50	55	\%	
HS Output Data (qp/qn)					
Data rate / Frequency	DC		50/25	Gbps/GHz	When used as a selector
Data rate	DC		50	Gbps	When used as a multiplexer
Logic "1" level		vcc		V	
Logic "0" level		cc-0.3		V	With external 500hm DC termination
Rise/Fall times	6	8	10	ps	20\%-80\%
Output Jitter			1	ps	Peak-to-peak

PACKAGE INFORMATION

The chip die is housed in a custom 24-pin CQFP package shown in Fig. 2. The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the VCC plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT5150-KMC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

Fig. 2. CQFP 24-Pin Package Drawing (All Dimensions in mm)

REVISION HISTORY

Revision	Date	
3.6 .2	$05-2020$	Updated Package Information
3.5 .2	$07-2019$	Updated Letterhead
3.5 .1	$02-2019$	Added truth table
3.4 .1	$07-2018$	Updated the absolute maximum ratings section
3.3 .1	$02-2017$	Revised electrical characteristics section Revised package information section
3.2 .1	$02-2013$	Revised title Revised pin out drawing Revised description Revised terminal functions table Revised electrical characteristics section Revised package information Added package mechanical drawing
3.1	$02-2012$	Added pin out drawing Revised description section Revised power supply configuration section Revised package information section
3.0	$01-2012$	Added power supply configuration text Added absolute maximum ratings table Revised electrical characteristics section Revised package information section
2.0	$02-2009$	Revised electrical characteristics section Revised package information section
1.0	$01-2009$	First release

