
Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

## ASNT2011-KMA DC-to-17*Gbps* Digital Demultiplexer 1:16 / Deserializer

- Broadband digital deserializer 1-to-16
- Low-power LVDS output data buffers with a proprietary architecture
- Clock-divided-by-16 LVDS output buffer with 90°-step phase selection
- Single +3.3V power supply
- Industrial temperature range
- Low power consumption of 730mW at 17Gbps
- Custom 100-pin CQFP package (13mm x 13mm)



Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

## **DESCRIPTION**

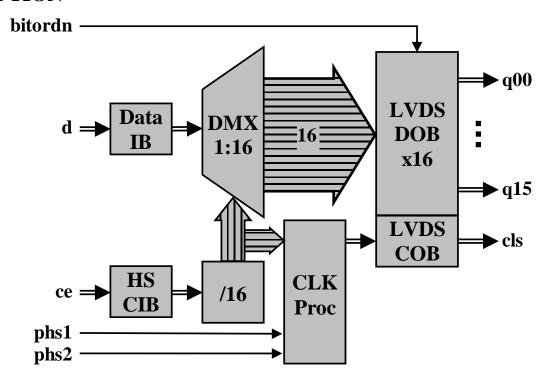



Fig. 1. Functional Block Diagram

ASNT2011-KMA is a low power and high-speed digital 1 to 16 demultiplexer / deserializer IC. The IC shown in Fig. 1 can function seamlessly over input data rates ( $f_{bit}$ ) ranging from DC to 17Gbps.

The main function of ASNT2011-KMA is to demultiplex a serial input data channel **dp/dn** running at a bit rate of  $f_{\text{bit}}$  into 16 parallel data channels **q00p/q00n-q15p/q15n** running at a bit rate of  $f_{\text{bit}}/16$ . The high sensitivity data input buffer (Data IB) ensures accurate operation at low input data signal amplitudes. It provides on-chip 50*Ohm* termination to **vcc** and is designed to be driven by devices with 50*Ohm* source impedance.

During normal operation, the received serial input data is latched into the tree-type demultiplexer DMX1:16 and subsequently describing and delivered to the demultiplexer's output as 16-bit wide low-speed parallel words. The output MSB corresponds to q00p/q00n when bitordn = 0 (default), or to q15p/q15n when bitordn = 1.

A full rate clock must be provided by an external source cep/cen to the high-speed clock input buffer HS CIB where it is routed to the internal divider-by-16 (/16). The divider provides signaling for DMX1:16 and produces a full rate clock divided-by-16 C16 for the low speed LVDS compliant clock output buffer LVDS COB. The phase of clsp/clsn can be modified by 90° increments by utilizing pins phs1 and phs2 and the clock processing block CLK Proc.

Sixteen proprietary low-power LVDS output data buffers LVDS DOBx16 are used to deliver the 16 data output signals q00p/q00n-q15p/q15n while a similar LVDS clock output buffer LVDS COB outputs the low-speed clock signal clsp/clsn.

The descrializer uses a single +3.3V power supply and is characterized for operation from -25 °C to 125 °C of junction temperature.

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

#### **Data IB**

The Data Input Buffer (Data IB) can process an input CML data signal dp/dn with bit rates from DC to  $f_{\text{bit}}$ . It can also accept a single-ended signal to one of its pins with a threshold voltage applied to the unused pin. Data IB can handle a wide range of input signal amplitudes. The buffer utilizes on-chip single-ended termination of 50Ohm to vcc for each input line.

#### **HS CIB**

The High-Speed Clock Input Buffer (HS CIB) can process an external CML clock signal cep/cen with frequencies from DC to  $f_{\rm bit}$ . It can also accept a single-ended signal to one of its pins with a threshold voltage applied to the unused pin. HS CIB can handle a wide range of input signal amplitudes. The buffer utilizes on-chip single-ended termination of 50Ohm to vcc for each input line.

## **/16**

The Divider-by-16 (/16) includes 4 divide-by-2 circuits connected in series. The high-speed clock delivered by HS CIB is fed into the first divide-by-2 where its output is routed internally to the next divide-by-two circuit and outside of the block to DMX1:16. Other divided down clock signals are formed and routed to DMX1:16 in similar fashion. A full rate clock divided-by-16 C16 is passed on to CLK Proc for additional phase adjustment.

#### **DMX1:16**

The 1 to 16 Demultiplexer (DMX1:16) utilizes a tree type architecture that latches in the data stream from Data IB on both edges of a half-rate clock signal supplied by the divider (/16). The high speed data signal is subsequently demultiplexed down and delivered to LVDS DOBx16 in parallel fashion as 16-bit wide words running at a data rate up to  $f_{\text{bit}}/16$ .

#### **CLK Proc**

By utilizing the CMOS control pins phs1 and phs2, the phase of clsp/clsn can be altered as shown in Table 1.

| phs1          | phs2          | C16S phase |
|---------------|---------------|------------|
| vee (default) | vee (default) | 270°       |
| vee           | vcc           | 180°       |
| vcc           | vee           | 90°        |
| VCC           | VCC           | 0°         |

Table 1. Output Clock Phase Selection

### LVDS DOBx16

The LVDS Data Output Buffer (LVDS DOBx16) accepts 16-bit wide words from DMX1:16 and converts them into LVDS output signals. Each proprietary low-power LVDS output buffer utilizes a special architecture that ensures operation at bit rates up to 2Gb/s with a nominal output current of 3.5mA. The buffer satisfies all the requirements of the IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995 standards. The output MSB corresponds to q00p/q00n when bitordn = 0 (default), or to q15p/q15n when bitordn = 1.

## LVDS COB

The LVDS Clock Output Buffer (LVDS COB) receives C16 from CLK Proc and converts it into the LVDS output signal clsp/clsn. The proprietary low-power LVDS output buffer utilizes a special architecture that

%

%

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ensures operation at frequencies up to 2.0*GHz* with a nominal output current of 3.5*mA*. The buffer satisfies all the requirements of the IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995 standards.

#### ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 2 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed vee).

**Parameter** Min **Units** Max Supply Voltage (vcc) +3.6 VPower Consumption 0.8 W RF Input Voltage Swing (SE) 1.2 VCase Temperature  ${}^{o}C$ +90Storage Temperature -40 +100 ${}^{o}C$ 

10

10

98

98

Table 2. Absolute Maximum Ratings

## TERMINAL FUNCTIONS

Operational Humidity

Storage Humidity

| Supply And Termination Voltages |                                            |                                                                          |  |  |
|---------------------------------|--------------------------------------------|--------------------------------------------------------------------------|--|--|
| Name                            | Description                                | Description Pin Number                                                   |  |  |
| vcc                             | Positive power supply                      | 5, 8, 11, 14, 25, 26, 29, 32, 35, 38, 41, 44, 47, 52, 55,                |  |  |
|                                 | (+3.3V)                                    | 59, 62, 65, 68, 71, 76, 79, 82, 85, 88, 91, 94, 97, 100                  |  |  |
| vee                             | Negative power supply (GND or 0 <i>V</i> ) | 1, 15, 17, 18, 23, 30, 36, 37, 50, 51, 58, 75                            |  |  |
| nc                              | Not connected pins                         | 2, 19, 20, 21, 22, 24, 27, 28, 31, 42, 43, 45, 46, 48,<br>49, 53, 54, 74 |  |  |

| TERMINAL |                 | AL      | DESCRIPTION                                                  |  |
|----------|-----------------|---------|--------------------------------------------------------------|--|
| Name     | No.             | Type    |                                                              |  |
|          | High-Speed I/Os |         |                                                              |  |
| dp       | 40              | Input   | CML differential data inputs with internal SE 50 <i>Ohm</i>  |  |
| dn       | 39              |         | termination to VCC                                           |  |
| cep      | 34              | Input   | CML differential clock inputs with internal SE 50 <i>Ohm</i> |  |
| cen      | 33              |         | termination to VCC                                           |  |
|          | Controls        |         |                                                              |  |
| phs1     | 57              | LS In., | Low-speed output clock phase selection (default: both low)   |  |
| phs2     | 56              | CMOS    |                                                              |  |
| bitordr  | 16              | LS In., | Output bit order selection (active: high, q15p/q15n is MSB;  |  |
|          |                 | CMOS    | default: low, q00p/q00n is MSB)                              |  |



Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

| TERMINAL |     | AL     | DESCRIPTION                                                  |  |
|----------|-----|--------|--------------------------------------------------------------|--|
| Name     | No. | Type   |                                                              |  |
|          |     | •      | Low-Speed I/Os                                               |  |
| q00n     | 10  |        |                                                              |  |
| q00p     | 9   | 1      |                                                              |  |
| q01n     | 7   |        |                                                              |  |
| q01p     | 6   |        |                                                              |  |
| q02n     | 4   |        |                                                              |  |
| q02p     | 3   |        |                                                              |  |
| q03n     | 99  |        |                                                              |  |
| q03p     | 98  |        |                                                              |  |
| q04n     | 96  |        |                                                              |  |
| q04p     | 95  | ]      |                                                              |  |
| q05n     | 93  |        |                                                              |  |
| q05p     | 92  |        |                                                              |  |
| q06n     | 90  |        |                                                              |  |
| q06p     | 89  |        |                                                              |  |
| q07n     | 87  |        |                                                              |  |
| q07p     | 86  | Output | LVDS data outputs                                            |  |
| q08n     | 84  | Output | LVDS data outputs                                            |  |
| q08p     | 83  |        |                                                              |  |
| q09n     | 81  |        |                                                              |  |
| q09p     | 80  |        |                                                              |  |
| q10n     | 78  |        |                                                              |  |
| q10p     | 77  |        |                                                              |  |
| q11n     | 73  |        |                                                              |  |
| q11p     | 72  |        |                                                              |  |
| q12n     | 70  | ]      |                                                              |  |
| q12p     | 69  | ]      |                                                              |  |
| q13n     | 67  | ]      |                                                              |  |
| q13p     | 66  | ]      |                                                              |  |
| q14n     | 64  | ]      |                                                              |  |
| q14p     | 63  | ]      |                                                              |  |
| q15n     | 61  |        |                                                              |  |
| q15p     | 60  |        |                                                              |  |
| clsp     | 12  | Output | LVDS clock outputs. Can transmit four different clock phases |  |
| clsn     | 13  |        | as defined by phs1 and phs2                                  |  |



Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

# **ELECTRICAL CHARACTERISTICS**

| PARAMETER                           | MIN      | TYP       | MAX        | UNIT        | COMMENTS            |
|-------------------------------------|----------|-----------|------------|-------------|---------------------|
|                                     | G        | eneral Pa | arameters  |             |                     |
| VCC                                 | +3.14    | +3.3      | +3.47      | V           | ±5%                 |
| vee                                 |          | 0.0       |            | V           | External ground     |
| Ivcc                                |          | 221       |            | mA          |                     |
| Power consumption                   |          | 730       |            | mW          |                     |
| Junction temperature                | -25      | 50        | 125        | $^{\circ}C$ |                     |
|                                     | HS       | Input D   | ata (dp/dn | )           |                     |
| Data Rate                           | 0        | 17        | 18         | Gbps        |                     |
| Swing p-p (Diff or SE)              | 0.04     |           | 0.8        | V           | Peak-to-peak        |
| CM Voltage Level                    | vcc -0.  | 8         | VCC        | V           |                     |
| HS Input Clock (cep/cen)            |          |           |            |             |                     |
| Frequency                           | 0.0      | 17        | 18         | GHz         |                     |
| Swing p-p (Diff or SE)              | 0.2      |           | 0.8        | V           | Peak-to-peak        |
| CM Voltage Level                    | vcc -0   | .8        | VCC        | V           |                     |
| Duty Cycle                          | 40       | 50        | 60         | %           |                     |
| LS                                  | Output D | Data (q00 | )p/q00n-q  | 15p/q15n)   |                     |
| Data Rate                           | 0.0      | 1063      | 1125       | Mbps        |                     |
| Interface                           |          | LVDS      |            |             | Meets the IEEE Std. |
|                                     |          |           |            |             | 1596.3-1996         |
|                                     | LS Ou    | ıtput Clo | ck (clsp/c | lsn)        |                     |
| Frequency                           | 0.0      | 1063      | 1125       | MHz         |                     |
| Interface                           |          | LVDS      |            |             | Meets the IEEE Std. |
|                                     |          |           |            |             | 1596.3-1996         |
|                                     |          | Control   | Inputs/Ou  | tputs       |                     |
| Logic "1" level                     | vcc -0.4 |           |            | V           |                     |
| Logic "0" level                     |          |           | vee+0.4    | V           |                     |
| Timing Parameters                   |          |           |            |             |                     |
| clsp/clsn to                        |          | ±2.5%     |            |             | Over the full       |
| q00p/q00n-q15p/q15n delay variation |          |           |            |             | temperature range   |

Offices: 310-530-9400 / Fax: 310-530-9402

www.adsantec.com

## **PACKAGE INFORMATION**



Fig. 2. Package Drawing

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

The chip die is housed in a custom 100-pin CQFP package shown in Fig. 2. The package's leads will be trimmed to a length of 1.0mm. After trimming, the package's leads will be further processed as follows:

- 1. The lead's gold plating will be removed per the following sections of J-STD-001D:
  - 3.9.1 Solderability
  - 3.2.2 Solder Purity Maintenance
  - 3.9.2 Solderability Maintenance
  - 3.9.3 Gold Removal
- 2. The leads will be tinned with Sn63Pb37 solder

The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the **VCC** plain, which is power for a positive supply.

The part's identification label is ASNT2011-KMA. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

#### **REVISION HISTORY**

| Revision | Date    | Changes                                    |  |  |
|----------|---------|--------------------------------------------|--|--|
| 3.5.2    | 05-2020 | Updated Package Information                |  |  |
| 3.4.2    | 07-2019 | Updated Letterhead                         |  |  |
| 3.4.1    | 05-2015 | Corrected Absolute Maximum Ratings section |  |  |
|          |         | Revised Package Information section        |  |  |
|          |         | Updated format                             |  |  |
| 3.3.1    | 09-2012 | Corrected input voltage range              |  |  |
|          |         | Corrected format                           |  |  |
| 3.2      | 06-2012 | Corrected package dimensions               |  |  |
| 3.1      | 02-2012 | Revised Description section                |  |  |
|          |         | Revised Package Information section        |  |  |
| 3.0      | 01-2012 | Added Absolute Maximums Rating table       |  |  |
|          |         | Revised Electrical Characteristics section |  |  |
|          |         | Revised Package Information section        |  |  |
| 2.0      | 02-2009 | Revised Electrical Characteristics section |  |  |
|          |         | Revised Package Information section        |  |  |
| 1.0      | 01-2009 | First release                              |  |  |