
ASNT1011A-KMA DC-to-17Gbps Digital Multiplexer 16:1 / Serializer

- Broadband digital serializer 16 to 1 operating seamlessly from DC to 17Gbps
- LVDS compliant input data buffers
- Full-rate clock output
- Clock divided-by-16 LVDS output buffer with 90°-step phase selection
- Single +3.3V power supply
- Industrial temperature range
- Low power consumption of 660mW at 17Gbps
- Custom 100-pin CQFP package (12mm x 12mm)

DESCRIPTION

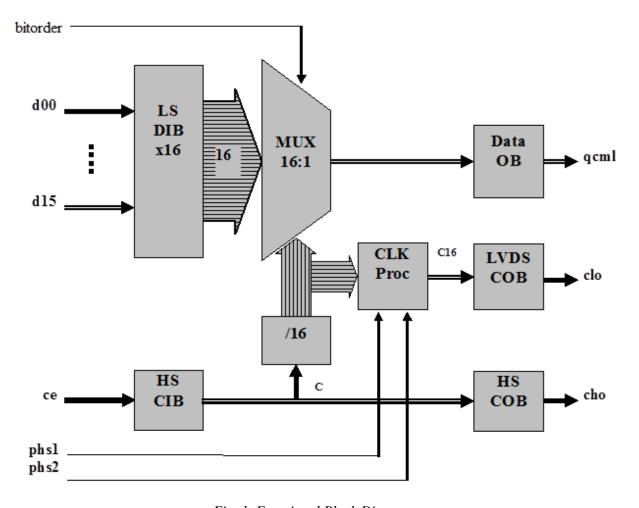


Fig. 1. Functional Block Diagram

ASNT1011A-KMA is a low power and high-speed digital 16-to-1 multiplexer (MUX) / serializer IC. The IC shown in Fig. 1 functions seamlessly over data rates (f_{bit}) ranging from DC to 17*Gbps*.

The main function of the IC is to multiplex 16 parallel data channels running at a bit rate of $f_{bit}/16$ into a high speed serial bit stream running at f_{bit} . It provides a high-speed output data channel for point-to-point data transmission over a controlled impedance media of 50Ohm. The transmission media can be a printed circuit board or copper coaxial cables. The functional distance of the data transfer is dependent upon the attenuation characteristics of the transportation media and the degree of noise coupling to the signaling environment.

During normal operation, the serializer's low-speed input buffer (LS DIBx16) accepts external 16-bit wide parallel data words d00p/d00n-d15p/d15n through 16 differential LVDS inputs and delivers them to the multiplexer's core (MUX16:1) for serialization. A full rate clock must be provided by an external source cep/cen to the high-speed clock input buffer (HS CIB) where it is routed to the high speed clock output buffer (HS COB) and the internal divider-by-16 (/16). The divider provides signaling for MUX16:1 and produces a full rate clock divided-by-16 "C16" for the low speed LVDS compliant clock output buffer (LVDS COB). The phase of clop/clon can be modified by 90° increments by utilizing pins phs1 and phs2 and the clock processing block (CLK Proc).

By utilizing pin bitorder, the serializer can designate either d00p/d00n or d15p/d15n as the MSB thus simplifying the interface between ASNT1011A-KMA and a proceeding ASIC.

The serialized words are transmitted as 2-level signals qcmlp/qcmln by a differential CML output buffer (Data OB). A full-rate clock is transmitted by HS COB in parallel with the high-speed data. The clock and data outputs are well phase matched to each other resulting in very little relative skew over the operating temperature range of the device. Both output stages are back terminated with on-chip 50*Ohm* resistors.

The serializer uses a single +3.3V power supply and is characterized for operation from $-25^{\circ}C$ to $125^{\circ}C$ of junction temperature.

LS DIBx16

The Low-Speed Data Input Buffer (LS DIBx16) consists of 16 proprietary universal input buffers (UIBs) that exceed the LVDS IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995 standards. UIB is designed to accept differential signals with amplitudes above 60mV peak-to-peak (p-p), DC common mode voltage variation between the negative **vee** and positive **vcc** supply rails, and AC common mode noise with a frequency up to 5MHz and voltage levels ranging from 0 to 2.4V. It can also receive single-ended signals with amplitudes above 60mVp-p and threshold voltages between **vee** and **vcc**. The input termination impedance is set to 100Ohm differential.

HS CIB

The High-Speed Clock Input Buffer (HS CIB) can process an external CML clock signal cep/cen with frequencies from DC to 17GHz. It can also accept a single-ended signal to cep/cen with a threshold voltage applied to the unused cen/cep pin. HS CIB can handle input signal amplitudes between 200mV and 1.2V p-p differential or single-ended. The buffer utilizes on-chip single-ended termination of 50Ohm to vcc for each input line.

/16

The Divider-by-16 (/16) includes 4 divide-by-2 circuits connected in series. The high-speed clock "C" is fed into the first divide-by-2 circuit that generates half rate clock "C2". "C2" is routed internally to the next divide-by-two circuit and outside of the block to MUX16:1. Other divided down clock signals are formed and routed to MUX16:1 in similar fashion. "C16" is passed on to LVDS COB to become the output low speed clock signal clop/clon.

MUX16:1

The 16 to 1 Multiplexer (MUX16:1) utilizes a tree type architecture that latches the incoming data on the negative edge of the "C16" clock signal that is supplied by /16. The 16-bit wide data word is subsequently multiplexed and delivered to Data OB as a single serial data stream running at a data rate up to 17Gbps. The latency of this circuit block is equal to roughly one period of "C16". The input MSB corresponds to d00p/d00n when bitorder = 0 (default), or to d15p/d15n when bitorder = 1.

Data OB

The Data Output Buffer (Data OB) receives high-speed serial data from MUX16:1 and converts it into the CML output signal qcmlp/qcmln with a single ended swing of 600mV. The buffer requires 500hm external termination resistors connected between vcc and each output to match its internal 500hm resistors and can operate at a data rate up to 17Gbps.

HS COB

The High Speed Clock Output Buffer (HS COB) utilizes the same termination scheme as Data OB and can operate at a frequency up to 17GHz while producing a single-ended CML output swing of 600mV. The buffer can be enabled or disabled by the external 2-state control signal **offcho**. The logic "0" state provides a full-rate clock output signal while the logic "1" state disables the buffer completely to save power.

CLK Proc

By utilizing the CMOS control pins phs1 and phs2, the phase of clop/clon can be altered in accordance with Table 1.

 phs1
 phs2
 C16 phase

 vee (default)
 vee (default)
 270°

 vee
 vcc
 180°

 vcc
 vee
 90°

 vcc
 vcc
 0°

Table 1. Output Clock Phase Selection

LVDS COB

The LVDS Clock Output Buffer (LVDS COB) receives "C16" and converts it into an LVDS output signal clop/clon. The proprietary low-power LVDS output buffer utilizes a special architecture that ensures operation at frequencies up to 2.0*GHz* with a low power consumption level of 30*mW*. The buffer satisfies all the requirements of the IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995 standards.

Output Timing

The phase relation between the output data qcmlp/qcmln and the full rate output clock chop/chon is specified in Table 2 and illustrated by Fig. 2.

Table 2. Output Data-to-Clock Phase Difference

Junction temperature,	τ,ps	
${}^{o}C$	Min.	Max.
-25	77	80
50	82	86
125	87	91

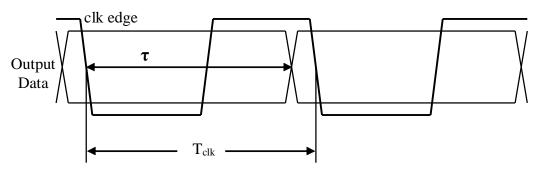


Fig. 2. Output Timing Diagram

Offices: 310-530-9400 / Fax: 310-530-9402

www.adsantec.com

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 3 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed vee).

Table 3. Absolute Maximum Ratings

Parameter	Min	Max	Units
Supply Voltage (vcc)		+3.6	V
Power Consumption		0.72	W
RF Input Voltage Swing (SE)		1.0	V
Case Temperature		+90	°C
Storage Temperature	-40	+100	°C
Operational Humidity	10	98	%
Storage Humidity	10	98	%

TERMINAL FUNCTIONS

TERMINAL		AL	DESCRIPTION	
Name	No.	Type		
	High-Speed I/Os			
cep	28	Input	CML differential external clock inputs with internal SE	
cen	27		50 <i>Ohm</i> termination to vcc	
chop	34	Output	CML differential clock outputs. Require external SE 50 <i>Ohm</i>	
chon	33		termination to VCC	
qcmlp	40	Output	CML differential data outputs. Require external SE 50 <i>Ohm</i>	
qcmln	39		termination to VCC	
	Controls			
phs1	57	LS In.,	Low-speed output clock phase selection (default: both low)	
phs2	56	CMOS		
offcho	18	LS In.,	HS COB control (active: high, buffer is disabled; default: low,	
		CMOS	full-rate output clock)	
bitorder	59	LS IN.,	Input bit order selection (active: high, d15p/d15n is serialized	
		CMOS	first; default: low, d00p/d00n is serialized first)	

TERMINAL		AL	DESCRIPTION			
Name	No.	Type				
Low-Speed I/Os						
clop	46	Output	LVDS clock outputs. Can transmit four different clock phases			
clon	45		as defined by phs1 and phs2			
d00p	60					
d00n	61					
d01p	63					
d01n	64					
d02p	66					
d02n	67					
d03p	69					
d03n	70					
d04p	72					
d04n	73					
d05p	77					
d05n	78					
d06p	80					
d06n	81					
d07p	83					
d07n	84					
d08p	86					
d08n	87	Input	LVDS data inputs			
d09p	89					
d09n	90					
d10p	92					
d10n	93					
d11p	95					
d11n	96					
d12p	98					
d12n	99					
d13p	3					
d13n	4					
d14p	6					
d14n	7					
d15p	9					
d15n	10					

	Supply and Termination Voltages			
Name	Description	Pin Number		
vcc	Positive power supply	5, 8, 11, 14, 24, 25, 26, 29, 32, 35, 38, 41, 44, 47, 52,		
	(+3.3V)	55, 62, 65, 68, 71, 76, 79, 82, 85, 88, 91, 94, 97, 100		
vee	Negative power supply (GND or 0 <i>V</i>)	1, 15, 16, 17, 23, 30, 36, 37, 50, 51, 58, 75		
NC	Unconnected pin	2, 12, 13, 19, 20, 21, 22, 31, 42, 43, 48, 49, 53, 54, 74		

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
		Genera	l Paramet	ers	
vcc	+3.14	+3.3	+3.47	V	±5%
vee		0.0		V	
Power consumption		660		mW	
Junction temperature	-25	50	125	$^{\circ}C$	
	LS Inpu	t Data (c	d00p/d00n	-d15p/d1	5n)
Data Rate	0.0		1063	Mbps	
Differential Swing	0.06		0.8	V	Peak-to-peak
CM Voltage Level	vee		VCC	V	
	Н	S Input	Clock (cep	o/cen)	
Frequency	0.0		17	GHz	
Swing (Diff or SE)	0.2		1.2	V	Peak-to-peak
CM Voltage Level	vcc -0.		VCC	V	
Duty Cycle	40%	50%	60%		
	HS (Output I	Data (qcml	p/qcmln)	
Data Rate	0.0		17	Gbps	
Logic "1" level		VCC		V	
Logic "0" level		vcc -0.6		V	
Jitter		12		ps	Peak-to-peak @12.5Gb/s
	HS	Output (Clock (cho	p/chon)	
Frequency	0.0		17	GHz	
Logic "1" level		VCC		V	
Logic "0" level		vcc -0.6		V	
Jitter		6		ps	Peak-to-peak @12.5GHz
Duty Cycle		50%			
LS Output Clock (clop/clon)					
Frequency	0.0		1063	MHz	
Interface		LVDS			Meets the IEEE Std.
CMOS Control Inputs					
Logic "1" level	vcc -0.4			V	
Logic "0" level			vee +0.4	V	

Offices: 310-530-9400 / Fax: 310-530-9402

www.adsantec.com

PACKAGE INFORMATION

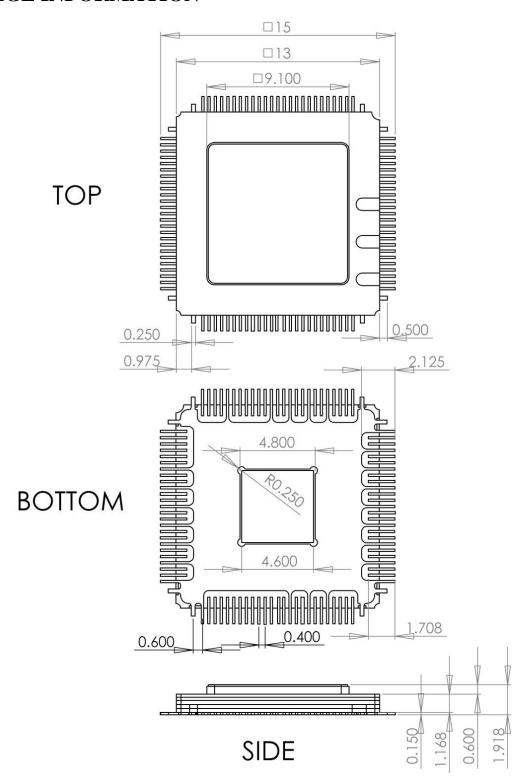


Fig. 3. Package Drawing

The chip die is housed in a custom 100-pin CQFP package. The dimensioned drawings are shown in Fig. 3. The package's leads will be trimmed to a length of 1.0mm. After trimming, the package's leads will be further processed as follows:

- 1. The lead's gold plating will be removed per the following sections of J-STD-001D:
 - 3.9.1 Solderability
 - 3.2.2 Solder Purity Maintenance
 - 3.9.2 Solderability Maintenance
 - 3.9.3 Gold Removal
- 2. The leads will be tinned with Sn63Pb37 solder

The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the **VCC** plain, which is power for a positive supply.

The part's identification label is ASNT1011A-KMA. The first 9 digits of the name before the underscore identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 digits after the underscore represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

REVISION HISTORY

Revision	Date	Changes			
2.3.2	01-2020	Updated Package Information			
2.2.2	07-2019	Letterhead Updated			
2.2.1	05-2015	Corrected Absolute Maximum Ratings section			
		Revised Package Information section			
		Updated format			
2.1	02-2012	Revised Description section			
		Revised Package Information section			
2.0	01-2012	Revised Electrical Characteristics section			
		Revised Package Information section			
		Added Absolute Maximums Rating table			
		Added Pin Diagram			
1.0	01-2011	First release			