Phone: 310-377-6029 / 310-803-9284 | Fax: 310-377-9940 Website: www.adsantec.com

ASNT1017 16:1 MUX-CMU

- 16 to 1 multiplexer (MUX) with integrated CMU (clock multiplication unit).
- Supports data rates from 11.5 Gb/s to 14.5 Gb/s in CMU mode.
- LVDS compliant input data buffers.
- Selectable full-speed or divided-by-2 clock output.
- LVDS output clock-divided-by-16 with a selectable phase.
- Single +3.3*V* power supply.
- Industrial temperature range.
- Low power consumption of 500mW.
- Available in standard 100-pin QFN package (12mm x 12mm).

DESCRIPTION

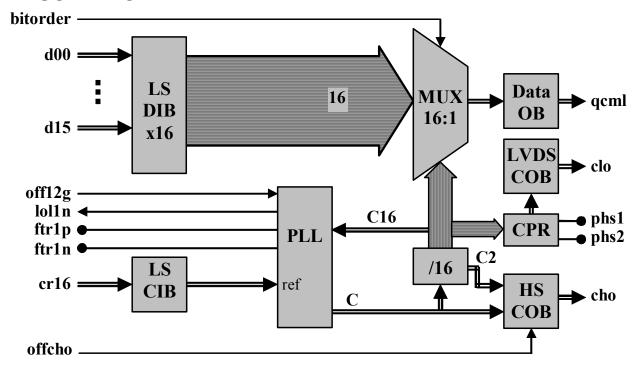


Fig. 1. Functional Block Diagram.

ASNT1017 is a low power and high-speed 16-to-1 multiplexer (MUX) with an internal clock multiplier unit (CMU). The main function of the chip is to multiplex 16 parallel data channels running at a bit rate of f_{bit}/16 into a high-speed serial bit stream running at f_{bit}. It provides a high-speed output data channel for point-to-point data transmission over a 50*Ohm* controlled impedance media. The transmission media can be a printed circuit board or copper coaxial cables. The functional distance of the data transfer is dependent upon the attenuation characteristics of the transportation media and the degree of noise coupling to the signaling environment.

Rev.: 1, Sept 2011. 1 ASNT1017-PQA

Phone: 310-377-6029 / 310-803-9284 | Fax: 310-377-9940 Website: www.adsantec.com

During normal operation, the serializer's low-speed input buffer (LS DIBx16) accepts external 16-bit wide parallel data words "d00"-"d15" through 16 differential LVDS inputs and delivers them to the multiplexer's core (MUX16:1) for serialization. By utilizing pin "bitorder", the serializer can designate either "d00" or "d15" as the MSB thus simplifying the interface between the multiplexer and the digital data source.

MUX16:1 serializes the data words with multiple divided down clock signals that are generated from the full rate clock "C" by the internal divider (/16). The divider also produces half rate clock "C2" for the high speed clock output buffer (HS COB), and engenders a full rate clock divided-by-16 signal "C16" for use by the PLL (PLL). "C" is synthesized by PLL, which locks "C16" to the external system level clock "cr16" that is provided by the low speed clock input buffer (LS CIB). "cr16" must be 1/16 the frequency of the active full rate VCO in PLL. PLL contains 2 full rate VCOs to cover the frequency range from 11.5 Gbps to 14.5 Gbps, which are selected utilizing the "off12g" control pin. It also generates a loss-of-lock alarm signal "lol1n".

The serialized words are transmitted as 2-level signals "qcml" by a differential CML output buffer (Data OB). A full-rate or half-rate clock "cho" is transmitted by a similar CML buffer (HS COB) in parallel with the high-speed data. The clock and data outputs are well phase matched to each other resulting in very little relative skew over the operating temperature range of the device. HS COB may be disabled or its operational mode changed by means of the 3-state (vee, vcc, not connected (n/c)) CMOS "offcho" signal. Both output stages are back terminated with on-chip 500hm resistors.

The chip also provides a differential low speed output clock "clo" though a LVDS clock output buffer (LVDS COB). The 0°, 90°, 180°, or 270° phase of the clock signal can be selected using control pins "phs1" and "phs2" as shown in Table 1.

The serializer uses a single +3.3V power supply and is characterized for operation from $-25^{\circ}C$ to $125^{\circ}C$ of junction temperature.

LS DIBx16

The Low-Speed Data Input Buffer (LS DIBx16) consists of 16 proprietary universal input buffers (UIBs) that fully comply with the LVDS standards IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995. UIB is designed to accept differential signals with amplitudes above 60mV peak-to-peak (p-p), DC common mode voltage variation between the negative (vee) and positive (vcc) supply rails, and AC common mode noise with a frequency up to 5MHz and voltage levels ranging from 0 to 2.4V. It can also receive single-ended signals with amplitudes above 60mV p-p and threshold voltages between vee and vcc. The input termination impedance is set to 1000hm differential.

LS CIB

The Low-Speed Clock Input Buffer (LS CIB) is a UIB that can run at a frequency up to 800*MHz*. This block is used to deliver the low speed system clock "cr16" as a reference signal to PLL.

Rev.: 1, Sept 2011. 2 ASNT1017-PQA

Phone: 310-377-6029 / 310-803-9284 | Fax: 310-377-9940 Website: www.adsantec.com

PLL

The Phase Locked Loop (PLL) contains a phase frequency detector, charge pump, an on-chip integrator with an additional off-chip filter connected between the pins "ftr1p" and "ftr1n" (Fig. 2), and two selectable LC-tank VCOs centered at 14*GHz* and 12*GHz*. The main function of PLL is to synthesize full rate clock "C" by aligning the phase and frequency of "C16" of the activated VCO to the externally applied system clock "cr16". A logic "0" output CMOS loss-of-lock "lol1n" alarm signal is generated by PLL if its two input clock signals are not matching in phase and/or frequency.

Fig. 2. External Filter Schematic.

Selection of the different VCOs of PLL is achieved by utilizing the CMOS control pin "off12g". A logic "1" chooses the 12*GHz* VCO while a logic "0" selects the 14*GHz* VCO (default state). The unused VCO is turned completely off in order to save power.

/16

The Divider-by-16 (/16) includes 4 divide-by-2 circuits connected in series. High-speed clock "C" is fed into the first divide-by-2 circuit that generates "C2". "C2" is routed internally to the next divide-by-two circuit and outside of the block to MUX16:1 and HS COB. Other divided down clock signals are formed and routed to MUX16:1 in similar fashion. "C16" is passed on to PLL and LVDS COB to become the output low speed clock signal "clo".

MUX16:1

The 16 to 1 Multiplexer (MUX16:1) utilizes a tree type architecture that latches the incoming data on the negative edge of the "C16" clock signal that is supplied by /16. The 16-bit wide data word is subsequently multiplexed and delivered to Data OB as a serial data stream running at a data rate up to 15*Gbps*. The latency of this circuit block is equal to roughly one period of the low-speed input clock. When "bitorder"=0 (default), "d00" is the MSB and when "bitorder"=1, "d15" is designated the MSB.

Data OB

The Data Output Buffer (Data OB) receives high-speed serial data from MUX16:1 and converts it into the CML output signal "qcml" with a single ended swing of 600mV. The buffer requires 500hm external termination resistors connected between "vcc" and each output to match its internal 500hm resistors and can operate at a data rate up to 15Gbps.

HS COB

The High Speed Clock Output Buffer (HS COB) utilizes the same termination scheme as Data OB and can operate at a frequency up to 15GHz while producing a single-ended CML output swing of 600mV. The buffer can be enabled or disabled by the external 3-state (vcc, vee, not connected (n/c)) control signal "offcho". The n/c default state corresponds to a "C2" output signal. The logic "0" state provides a full-rate clock output signal while the logic "1" state disables the buffer completely to save power.

Rev.: 1, Sept 2011. 3 ASNT1017-PQA

Phone: 310-377-6029 / 310-803-9284 | Fax: 310-377-9940 Website: www.adsantec.com

CLK Proc

By utilizing the CMOS control pins "phs1" and "phs2", the phase of the output low-speed clock ("clo") can be selected in accordance with Table 1 below.

Table 1. Output Clock Phase Selection.

"phs1"	"phs2"	C16 phase
V _{EE} (default)	V _{EE} (default)	270°
$ m V_{EE}$	V_{CC}	180°
V_{CC}	$ m V_{EE}$	90°
V_{CC}	V_{CC}	0°

LVDS COB

The LVDS Clock Output Buffer (LVDS COB) receives a signal from the clock processor and converts it into an LVDS output signal "clo". The proprietary low-power LVDS output buffer utilizes a special architecture that ensures operation at frequencies up to 2GHz with a low power consumption level of 30mW. The buffer satisfies all the requirements of the IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995.

Output Timing

Phase relation between the output data "qcml" and full rate output clock "cho" is specified in Table 2 and illustrated by Fig. 3.

Table 2. Output Data-to-Clock Phase Difference

Junction temperature,	$\boldsymbol{\tau}, ps$		
^{o}C	Min.	Max.	
-25	77	80	
50	82	86	
125	87	91	

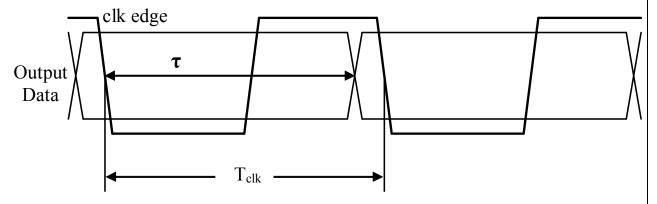


Fig. 3. Output Timing Diagram.

Rev.: 1, Sept 2011. 4 ASNT1017-PQA

Phone: 310-377-6029 / 310-803-9284 | Fax: 310-377-9940 Website: www.adsantec.com

TERMINAL FUNCTIONS

The description of the package pins is presented in the table below.

Supply and Termination Voltages				
Name	Description	Pin Number		
vcc	Positive power supply. (+3.3 <i>V</i>)	5, 8, 11, 25, 26, 29, 32, 35, 38, 41, 44, 55, 62, 65, 68, 71, 76, 79, 82, 85, 88, 91, 94, 97, 100.		
vee	Negative power supply. (GND or 0V)	1, 15, 23, 24, 30, 36, 50, 51, 75,		
vecl	Input termination voltage. ("vcc" for CML, +2V for ECL)	2 and 74.		
nc	Unconnected pin.	17, 27, 28, 31, 42, 43, 47-49, 52-54, 58.		

TERMINAL		A L	DESCRIPTION	
Name	No.	Type		
High-Sp	eed I/C	Os		
chop	34	Output	CML differential clock outputs. Require external SE 50 <i>Ohm</i>	
chon	33		termination to "vcc". Can be disabled by "offcho".	
qcmlp	40	Output	CML differential data outputs. Require external SE 50 <i>Ohm</i>	
qcmln	39		termination to "vcc".	
Controls	,			
lol1n	19	LS Out,	PLL1 lock indicator (high: locked; low: no lock).	
		CMOS		
ftr1p	20	I/O	PLL1 external filter connection ($1nF$ capacitor differential).	
ftr1n	21			
offecl	14	LS In.,	LS input termination selector (active: low, CML or ECL	
		CMOS	depending on the "vecl" connection; default: high, LVDS).	
offc64	16	LS In.,	Division ratio clock selection (active: low, division by 64;	
		CMOS	default: high, division by 16).	
offcho	18	LS In.,	HS COB control (active: high, buffer is disabled; default: low,	
		CMOS	full-rate output clock).	
off12g	22	LS In.,	VCO frequency selection (active: high, 11.0 <i>GHz</i> ; default: low,	
		3-state	11.8 <i>GHz</i>).	
capsel1	37	LS In.,	Internal filter select (default: n/c, 22.5pF; high: 48pF, low:	
		CMOS	10pF).	
phs1	57	LS In.,	Low-speed output clock phase selection (default: both low).	
phs2	56	CMOS		
bitorder	59	LS In.,	Input bit order selection (active: high, d15 is serialized first;	
		CMOS	default: low, d00 is serialized first).	

Rev.: 1, Sept 2011. 5 ASNT1017-PQA

Phone: 310-377-6029 / 310-803-9284 | Fax: 310-377-9940 Website: www.adsantec.com

T	ERMINA	AL .	DESCRIPTION
Name	No.	Type	
Low-Sp	eed I/Os		
cr16p	12	Input	LVDS clock inputs.
cr16n	13		
clop	46	Output	LVDS clock outputs.
clon	45		
d00p	60	Input	
d00n	61		
d01p	63		
d01n	64		
d02p	66		
d02n	67		
d03p	69		
d03n	70		
d04p	72		
d04n	73		
d05p	77		
d05n	78		
d06p	80		
d06n	81		
d07p	83		
d07n	84		LVDS data inputs.
d08p	86		
d08n	87		
d09p d09n	89 90		
d10p	90		
d10p	93		
d11p	95		
dlln	96		
d12p	98		
d12p	99		
d13p	3		
d13n	4		
d14p	6		
d14n	7		
d15p	9		
d15n	10		

Rev.: 1, Sept 2011. 6 ASNT1017-PQA

Phone: 310-377-6029 / 310-803-9284 | Fax: 310-377-9940 Website: www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS		
	General Parameters						
V_{CC}	+3.14	+3.3	+3.47	\overline{V}	±5%		
$ m V_{EE}$		0.0		V			
Power consumption		500		mW			
Junction temperature	-25	50	125	$^{\circ}C$			
	<u>1</u>	LS Input I	Data (d00-c	<u>d15)</u>			
Data Rate	720		910	Mbps			
Differential Swing	0.06		0.8	V	Peak-to-peak		
CM Voltage Level	$ m V_{EE}$		V_{CC}	V			
		nput Refe	rence Cloc				
Frequency	720		910	MHz			
Differential Swing	0.06		0.8	V	Peak-to-peak		
CM Voltage Level	$ m V_{EE}$		V_{CC}	V			
		HS Outpi	<u>ıt Data (qc</u>				
Data Rate	11.5		14.5	Gbps			
Logic "1" level		V_{CC}		V			
Logic "0" level		V_{CC} -0.6		V	D 1		
Jitter		12		ps	Peak-to-peak @12.5Gb/s		
HS Output Clock (cho)							
Frequency	5.75	1 7	14.5	GHz			
Logic "1" level		V_{CC}		V			
Logic "0" level		V _{CC} -0.6		V	Pools to mosts @12.5CH-		
Jitter		_		ps	Peak-to-peak @12.5GHz		
Duty Cycle 50%							
LS Output Clock (clo) Frequency 720 910 MHz							
Frequency Interface	120	LVDS	910	MHz	Meets the IEEE Std.		
CMOS Control Inputs/Outputs							
Logic "1" level	V_{CC} -0.4	<u>US CONTI</u>	oi inpuis/C	<u>Juipuis</u> V			
Logic "0" level	v ((C=0.4		V_{EE} +0.4	V = V			
Logic o icvei			▼ EE · U.→	V			

PACKAGE INFORMATION

The chip is packaged in a standard 100-pin QFN package. The package's mechanical information is available on the company's website.

Rev.: 1, Sept 2011. 7 ASNT1017-PQA